Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation

[1]  E. Egelman,et al.  Structure of the Neisseria meningitidis Type IV pilus , 2016, Nature Communications.

[2]  Jason W. Labonte,et al.  Structural Diversity in the Type IV Pili of Multidrug-resistant Acinetobacter* , 2016, The Journal of Biological Chemistry.

[3]  A. Buckling,et al.  Prophages mediate defense against phage infection through diverse mechanisms , 2016, The ISME Journal.

[4]  L. Burrows,et al.  Structural and Functional Studies of the Pseudomonas aeruginosa Minor Pilin, PilE* , 2015, The Journal of Biological Chemistry.

[5]  M. Nilges,et al.  Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation , 2015, PLoS pathogens.

[6]  P. Castric,et al.  The group I pilin glycan affects type IVa pilus hydrophobicity and twitching motility in Pseudomonas aeruginosa 1244. , 2015, Microbiology.

[7]  Y. Hao,et al.  Type IV Pilus Glycosylation Mediates Resistance of Pseudomonas aeruginosa to Opsonic Activities of the Pulmonary Surfactant Protein A , 2015, Infection and Immunity.

[8]  L. Burrows,et al.  Pseudomonas aeruginosa Minor Pilins Prime Type IVa Pilus Assembly and Promote Surface Display of the PilY1 Adhesin* , 2014, The Journal of Biological Chemistry.

[9]  T. Sampson,et al.  Alternative Roles for CRISPR/Cas Systems in Bacterial Pathogenesis , 2013, PLoS pathogens.

[10]  Shuai Le,et al.  Mapping the Tail Fiber as the Receptor Binding Protein Responsible for Differential Host Specificity of Pseudomonas aeruginosa Bacteriophages PaP1 and JG004 , 2013, PloS one.

[11]  Rotem Sorek,et al.  CRISPR-mediated adaptive immune systems in bacteria and archaea. , 2013, Annual review of biochemistry.

[12]  Alan R. Davidson,et al.  Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system , 2012, Nature.

[13]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[14]  M. Brockhurst,et al.  Differential infection properties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa , 2012, BMC Microbiology.

[15]  L. Burrows Pseudomonas aeruginosa twitching motility: type IV pili in action. , 2012, Annual review of microbiology.

[16]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[17]  J. Engel,et al.  Pseudomonas aeruginosa Pili and Flagella Mediate Distinct Binding and Signaling Events at the Apical and Basolateral Surface of Airway Epithelium , 2012, PLoS pathogens.

[18]  J. Kelly,et al.  Pseudomonas aeruginosa d-Arabinofuranose Biosynthetic Pathway and Its Role in Type IV Pilus Assembly* , 2011, The Journal of Biological Chemistry.

[19]  J. Lam,et al.  Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide , 2011, Front. Microbio..

[20]  M. Wolfgang,et al.  Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus‐associated adhesin , 2010, Cellular microbiology.

[21]  L. Burrows,et al.  Pseudomonas aeruginosa minor pilins are incorporated into type IV pili. , 2010, Journal of molecular biology.

[22]  Sylvain Moineau,et al.  Bacteriophage resistance mechanisms , 2010, Nature Reviews Microbiology.

[23]  L. Burrows,et al.  Single-Residue Changes in the C-Terminal Disulfide-Bonded Loop of the Pseudomonas aeruginosa Type IV Pilin Influence Pilus Assembly and Twitching Motility , 2009, Journal of bacteriology.

[24]  J. Kelly,et al.  Modification of Pseudomonas aeruginosa Pa5196 Type IV Pilins at Multiple Sites with d-Araf by a Novel GT-C Family Arabinosyltransferase, TfpW , 2008, Journal of bacteriology.

[25]  L. Burrows,et al.  Novel Proteins That Modulate Type IV Pilus Retraction Dynamics in Pseudomonas aeruginosa , 2008, Journal of bacteriology.

[26]  L. Craig,et al.  Type IV pili: paradoxes in form and function. , 2008, Current opinion in structural biology.

[27]  G. Lau,et al.  Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. , 2007, Microbiology.

[28]  B. Maier,et al.  Pseudomonas aeruginosa Type IV Pilus Expression in Neisseria gonorrhoeae: Effects of Pilin Subunit Composition on Function and Organelle Dynamics , 2007, Journal of bacteriology.

[29]  J. Brisson,et al.  Glycosylation of Pseudomonas aeruginosa Strain Pa5196 Type IV Pilins with Mycobacterium-Like α-1,5-Linked d-Araf Oligosaccharides , 2006, Journal of bacteriology.

[30]  M. Nasu,et al.  Intratracheal immunization with pili protein protects against mortality associated with Pseudomonas aeruginosa pneumonia in mice. , 2006, FEMS Immunology & Medical Microbiology.

[31]  D. Stolz,et al.  Influence of Pilin Glycosylation on Pseudomonas aeruginosa 1244 Pilus Function , 2005, Infection and Immunity.

[32]  L. Burrows,et al.  Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients. , 2004, Microbiology.

[33]  M. Weinbauer Ecology of prokaryotic viruses. , 2004, FEMS microbiology reviews.

[34]  John A Tainer,et al.  Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. , 2003, Molecular cell.

[35]  J. Lam,et al.  Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity , 2002, Molecular microbiology.

[36]  C. Deal,et al.  Identification of the Pseudomonas aeruginosa 1244 Pilin Glycosylation Site , 2002, Infection and Immunity.

[37]  R. Carlson,et al.  Structural Characterization of the Pseudomonas aeruginosa 1244 Pilin Glycan* , 2001, The Journal of Biological Chemistry.

[38]  H. Schweizer,et al.  A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. , 1998, Gene.

[39]  H. Hahn,et al.  The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa--a review. , 1997, Gene.

[40]  T. Pitt,et al.  Pilus-dependence of four Pseudomonas aeruginosa bacteriophages with non-contractile tails. , 1974, The Journal of general virology.

[41]  A. Davidson,et al.  Long noncontractile tail machines of bacteriophages. , 2012, Advances in experimental medicine and biology.

[42]  Rob Lavigne,et al.  Phage proteomics: applications of mass spectrometry. , 2009, Methods in molecular biology.

[43]  C. Fenselau Applications of Mass Spectrometry , 1978 .