A fourth-order accurate finite volume method for ideal MHD via upwind constrained transport

Abstract We present a fourth-order accurate finite volume method for the solution of ideal magnetohydrodynamics (MHD). The numerical method combines high-order quadrature rules in the solution of semi-discrete formulations of hyperbolic conservation laws with the upwind constrained transport (UCT) framework to ensure that the divergence-free constraint of the magnetic field is satisfied. A novel implementation of UCT that uses the piecewise parabolic method (PPM) for the reconstruction of magnetic fields at cell corners in 2D is introduced. The resulting scheme can be expressed as the extension of the second-order accurate constrained transport (CT) Godunov-type scheme that is currently used in the Athena astrophysics code. After validating the base algorithm on a series of hydrodynamics test problems, we present the results of multidimensional MHD test problems which demonstrate formal fourth-order convergence for smooth problems, robustness for discontinuous problems, and improved accuracy relative to the second-order scheme.

[1]  John Loffeld,et al.  On the arithmetic intensity of high-order finite-volume discretizations for hyperbolic systems of conservation laws , 2019, Int. J. High Perform. Comput. Appl..

[2]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[3]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[4]  Chi-Wang Shu,et al.  Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations , 2005, J. Sci. Comput..

[5]  R. Teyssier,et al.  A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics , 2006 .

[6]  Michael Dumbser,et al.  ADER-WENO finite volume schemes with space-time adaptive mesh refinement , 2012, J. Comput. Phys..

[7]  David I. Ketcheson,et al.  Runge-Kutta methods with minimum storage implementations , 2010, J. Comput. Phys..

[8]  Takanobu Amano,et al.  Divergence-free approximate Riemann solver for the quasi-neutral two-fluid plasma model , 2015, J. Comput. Phys..

[9]  Paul R. Woodward,et al.  On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .

[10]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[11]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[12]  Francesco Miniati,et al.  A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998 .

[13]  Chi-Wang Shu,et al.  High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..

[14]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[15]  K. Kusano,et al.  A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .

[16]  R. I. Klein,et al.  An unsplit, cell-centered Godunov method for ideal MHD , 2005 .

[17]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[18]  Dinshaw S. Balsara,et al.  Multidimensional Riemann problem with self-similar internal structure. Part I - Application to hyperbolic conservation laws on structured meshes , 2014, J. Comput. Phys..

[19]  Phillip Colella,et al.  A limiter for PPM that preserves accuracy at smooth extrema , 2008, J. Comput. Phys..

[20]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[21]  Mark Vogelsberger,et al.  A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations , 2013, 1305.5536.

[22]  Phillip Colella,et al.  A HIGH-ORDER FINITE-VOLUME METHOD FOR CONSERVATION LAWS ON LOCALLY REFINED GRIDS , 2011 .

[23]  Claus-Dieter Munz,et al.  xtroem-fv: a new code for computational astrophysics based on very high order finite-volume methods – I. Magnetohydrodynamics , 2016 .

[24]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[25]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[26]  James M. Stone,et al.  A simple unsplit Godunov method for multidimensional MHD , 2009 .

[27]  Phillip Colella,et al.  High-order finite-volume methods on locally-structured grids , 2009 .

[28]  P. Colella,et al.  A fourth-order accurate local refinement method for Poisson's equation , 2005 .

[29]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[30]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[31]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[32]  Dinshaw S. Balsara A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..

[33]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[34]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[35]  Dinshaw Balsara,et al.  A Comparison between Divergence-Cleaning and Staggered-Mesh Formulations for Numerical Magnetohydrodynamics , 2003 .

[36]  Andrea Mignone,et al.  High-order conservative finite difference GLM-MHD schemes for cell-centered MHD , 2010, J. Comput. Phys..

[37]  Gérard Gallice,et al.  Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws , 1997 .

[38]  Landon D. Owen,et al.  A freestream-preserving fourth-order finite-volume method in mapped coordinates with adaptive-mesh refinement , 2015 .

[39]  S. F. Davis Simplified second-order Godunov-type methods , 1988 .

[40]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[41]  Dongsu Ryu,et al.  Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow , 1995 .

[42]  P. Londrillo,et al.  On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method , 2004 .

[43]  Rainald Löhner,et al.  A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids , 2008, J. Comput. Phys..

[44]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[45]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[46]  S. Falle Self-similar jets , 1991 .

[47]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[48]  Dinshaw S. Balsara Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows , 2010, J. Comput. Phys..

[49]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[50]  J. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.

[51]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[52]  Michael Dumbser,et al.  Multidimensional Riemann problem with self-similar internal structure. Part II - Application to hyperbolic conservation laws on unstructured meshes , 2015, J. Comput. Phys..

[53]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[54]  Catherine Mills Olschanowsky,et al.  A Study on Balancing Parallelism, Data Locality, and Recomputation in Existing PDE Solvers , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[55]  Takashi Minoshima,et al.  Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications , 2016 .

[56]  Phillip Colella,et al.  High-order, finite-volume methods in mapped coordinates , 2010, J. Comput. Phys..

[57]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[58]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[59]  James M. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..

[60]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[61]  Jayson Luc Peterson,et al.  Positivity Preservation and Advection Algorithms with Applications to Edge Plasma Turbulence , 2013, SIAM J. Sci. Comput..

[62]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[63]  Dongsu Ryu,et al.  Numerical magetohydrodynamics in astronphysics: Algorithm and tests for one-dimensional flow` , 1995 .

[64]  Hans De Sterck,et al.  High-order central ENO finite-volume scheme for ideal MHD , 2013 .

[65]  Andrea Mignone,et al.  High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates , 2014, J. Comput. Phys..