AGPAT2 is essential for postnatal development and maintenance of white and brown adipose tissue

[1]  O. Larsson,et al.  A stringent validation of mouse adipose tissue identity markers. , 2015, American journal of physiology. Endocrinology and metabolism.

[2]  V. Cortés,et al.  Lipodystrophies: adipose tissue disorders with severe metabolic implications , 2015, Journal of Physiology and Biochemistry.

[3]  S. O’Rahilly,et al.  Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis , 2015, Molecular metabolism.

[4]  A. Yamashita,et al.  Glycerophosphate/Acylglycerophosphate Acyltransferases , 2014, Biology.

[5]  E. Ravussin,et al.  Caveolin-1 Expression and Cavin Stability Regulate Caveolae Dynamics in Adipocyte Lipid Store Fluctuation , 2014, Diabetes.

[6]  K. Reue,et al.  Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle. , 2014, Cell metabolism.

[7]  D. A. Foster,et al.  Phospholipase D and the Maintenance of Phosphatidic Acid Levels for Regulation of Mammalian Target of Rapamycin (mTOR)* , 2014, The Journal of Biological Chemistry.

[8]  Peng Li,et al.  Adipose-Specific Knockout of Seipin/Bscl2 Results in Progressive Lipodystrophy , 2014, Diabetes.

[9]  D. Guertin,et al.  Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed , 2014, Nature Communications.

[10]  Takao Shimizu,et al.  Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells , 2014, Journal of Lipid Research.

[11]  A. Castro,et al.  Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events , 2014, Cell cycle.

[12]  J. Santos,et al.  Divergent Metabolic Phenotype between Two Sisters with Congenital Generalized Lipodystrophy Due to Double AGPAT2 Homozygous Mutations. A Clinical, Genetic and In Silico Study , 2014, PloS one.

[13]  A. Garg,et al.  Hepatic Gluconeogenesis Is Enhanced by Phosphatidic Acid Which Remains Uninhibited by Insulin in Lipodystrophic Agpat2−/− Mice* , 2014, The Journal of Biological Chemistry.

[14]  T. Lydic,et al.  Altered Lipid Metabolism in Residual White Adipose Tissues of Bscl2 Deficient Mice , 2013, PloS one.

[15]  P. Scherer,et al.  Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis , 2013, Journal of Lipid Research.

[16]  S. O’Rahilly,et al.  The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1. , 2013, Molecular metabolism.

[17]  S. Martens,et al.  Dissecting the role of the Atg12–Atg5-Atg16 complex during autophagosome formation , 2013, Autophagy.

[18]  Takao Shimizu,et al.  Lysophosphatidylcholine Acyltransferase 3 Is the Key Enzyme for Incorporating Arachidonic Acid into Glycerophospholipids during Adipocyte Differentiation , 2012, International journal of molecular sciences.

[19]  F. Milagro,et al.  Adiposoft: automated software for the analysis of white adipose tissue cellularity in histological sections , 2012, Journal of Lipid Research.

[20]  Charles R. Evans,et al.  Alterations in Lipid Signaling Underlie Lipodystrophy Secondary to AGPAT2 Mutations , 2012, Diabetes.

[21]  S. Cinti The adipose organ at a glance , 2012, Disease Models & Mechanisms.

[22]  I. Murano,et al.  The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes[S] , 2012, Journal of Lipid Research.

[23]  Richard G. W. Anderson,et al.  Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. , 2012, Cell metabolism.

[24]  Sean M. Hartig,et al.  Berardinelli-Seip Congenital Lipodystrophy 2/Seipin Is a Cell-Autonomous Regulator of Lipolysis Essential for Adipocyte Differentiation , 2012, Molecular and Cellular Biology.

[25]  Saeed Tavazoie,et al.  Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis , 2011, Development.

[26]  A. Garg,et al.  Human 1-Acylglycerol-3-phosphate O-Acyltransferase Isoforms 1 and 2 , 2011, The Journal of Biological Chemistry.

[27]  T. Meshulam,et al.  Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity , 2011, Journal of Lipid Research.

[28]  Liping Zhao,et al.  Seipin ablation in mice results in severe generalized lipodystrophy. , 2011, Human molecular genetics.

[29]  T. Walther,et al.  A Role for Phosphatidic Acid in the Formation of “Supersized” Lipid Droplets , 2011, PLoS genetics.

[30]  J. Balsinde,et al.  Caveolin-1 Deficiency Causes Cholesterol-Dependent Mitochondrial Dysfunction and Apoptotic Susceptibility , 2011, Current Biology.

[31]  N. Briand,et al.  The lipoatrophic caveolin-1 deficient mouse model reveals autophagy in mature adipocytes , 2010, Autophagy.

[32]  P. Ferré,et al.  Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects[S] , 2010, Journal of Lipid Research.

[33]  Shengkan Jin,et al.  Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice , 2009, Autophagy.

[34]  Keith L March,et al.  The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation. , 2009, Endocrinology.

[35]  M. Frohman,et al.  Lipid signaling on the mitochondrial surface. , 2009, Biochimica et biophysica acta.

[36]  M. Topham,et al.  Diacylglycerol kinases as sources of phosphatidic acid. , 2009, Biochimica et biophysica acta.

[37]  I. Nonaka,et al.  Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. , 2009, The Journal of clinical investigation.

[38]  A. K. Agarwal,et al.  Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. , 2009, Cell metabolism.

[39]  K. H. Albrecht,et al.  Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. , 2008, Cell metabolism.

[40]  S. O’Rahilly,et al.  Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. , 2008, The Journal of clinical endocrinology and metabolism.

[41]  A. do Vale,et al.  Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications , 2008, Apoptosis.

[42]  R. Parton,et al.  Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast , 2008, The Journal of cell biology.

[43]  Richard G. W. Anderson,et al.  The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology , 2007, Proceedings of the National Academy of Sciences.

[44]  Guido Kroemer,et al.  Self-eating and self-killing: crosstalk between autophagy and apoptosis , 2007, Nature Reviews Molecular Cell Biology.

[45]  O. MacDougald,et al.  Adipocyte differentiation from the inside out , 2006, Nature Reviews Molecular Cell Biology.

[46]  Seok-Yong Choi,et al.  A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis , 2006, Nature Cell Biology.

[47]  Maoyin Li,et al.  Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase Dalpha1 knockout mutant. , 2006, Phytochemistry.

[48]  Xianlin Han,et al.  A Regulatory Role for 1-Acylglycerol-3-phosphate-O-acyltransferase 2 in Adipocyte Differentiation* , 2006, Journal of Biological Chemistry.

[49]  S. Ishii,et al.  Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. , 2006, Developmental cell.

[50]  J. Singer,et al.  Substrate specificity of lysophosphatidic acid acyltransferase beta -- evidence from membrane and whole cell assays. , 2006, Journal of lipid research.

[51]  Shupei Wang,et al.  Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans Published, JLR Papers in Press, September 8, 2005. DOI 10.1194/jlr.M500294-JLR200 , 2005, Journal of Lipid Research.

[52]  A. Garg,et al.  Congenital generalized lipodystrophy: significance of triglyceride biosynthetic pathways , 2003, Trends in Endocrinology & Metabolism.

[53]  Y. Sang,et al.  Profiling Membrane Lipids in Plant Stress Responses , 2002, The Journal of Biological Chemistry.

[54]  M. Kanzaki,et al.  Caveolin-associated Filamentous Actin (Cav-actin) Defines a Novel F-actin Structure in Adipocytes* , 2002, The Journal of Biological Chemistry.

[55]  David S. Park,et al.  Caveolin-1-deficient Mice Are Lean, Resistant to Diet-induced Obesity, and Show Hypertriglyceridemia with Adipocyte Abnormalities* , 2002, The Journal of Biological Chemistry.

[56]  M. Kanzaki,et al.  Insulin-stimulated GLUT4 Translocation in Adipocytes Is Dependent upon Cortical Actin Remodeling* 210 , 2001, The Journal of Biological Chemistry.

[57]  J. Papp,et al.  Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13 , 2001, Nature Genetics.

[58]  P. Puigserver,et al.  Transcriptional regulation of adipogenesis. , 2000, Genes & development.

[59]  S. Clarke,et al.  Cytosolic and nuclear distribution of PPARgamma2 in differentiating 3T3-L1 preadipocytes. , 1998, Journal of lipid research.

[60]  B. Spiegelman,et al.  Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor , 1994, Cell.

[61]  S. Grundy,et al.  Peculiar distribution of adipose tissue in patients with congenital generalized lipodystrophy. , 1992, The Journal of clinical endocrinology and metabolism.

[62]  Richard G. W. Anderson,et al.  Caveolin, a protein component of caveolae membrane coats , 1992, Cell.

[63]  A. Garg Lipodystrophies: Genetic and Acquired Body Fat Disorders , 2011 .

[64]  A. Bowcock,et al.  AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34 , 2002, Nature Genetics.

[65]  A. Wolffe,et al.  PPARγ knockdown by engineered transcription factors: exogenous PPARγ2 but not PPARγ1 reactivates adipogenesis , 2002 .

[66]  B. Spiegelman,et al.  Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. , 1994, Cell.