Lidar system with nonmechanical electrowetting-based wide-angle beam steering.

A light detection and ranging (lidar) system with ±90° of steering based on an adaptive electrowetting-based prism for nonmechanical beam steering has been demonstrated. Electrowetting-based prisms provide a transmissive, low power, and compact alternative to conventional adaptive optics as a nonmechanical beam scanner. The electrowetting prism has a steering range of ±7.8°. We demonstrate a method to amplify the scan angle to ±90° and perform a one-dimensional scan in a lidar system.

[1]  Young Kwon Kim,et al.  Effects of drop size and viscosity on spreading dynamics in DC electrowetting. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[2]  T. Frach,et al.  The digital Silicon Photomultiplier — A novel sensor for the detection of scintillation light , 2009, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[3]  Abbie T Watnik,et al.  Efficient multibeam large-angle nonmechanical laser beam steering from computer-generated holograms rendered on a liquid crystal spatial light modulator. , 2016, Applied optics.

[4]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[5]  V. Bright,et al.  Liquid Combination with High Refractive Index Contrast and Fast Scanning Speeds for Electrowetting Adaptive Optics. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[6]  Hans Zappe,et al.  Tubular astigmatism-tunable fluidic lens. , 2016, Optics letters.

[7]  Qiong-Hua Wang,et al.  Liquid prism for beam tracking and steering , 2012 .

[8]  Gregory L. Futia,et al.  Two-photon laser scanning microscopy with electrowetting-based prism scanning. , 2017, Biomedical optics express.

[9]  R. Cormack,et al.  Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices. , 2017, Optics express.

[10]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[11]  L. Coldren,et al.  Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. , 2011, Optics express.

[12]  B. Hendriks,et al.  Electrowetting-Based Variable-Focus Lens for Miniature Systems , 2005 .

[13]  Michael J. Escuti,et al.  Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings , 2008, Optical Engineering + Applications.

[14]  Robert H. Cormack,et al.  Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts. , 2015, Optics letters.

[15]  V. Bright,et al.  Enhanced Response Time of Electrowetting Lenses with Shaped Input Voltage Functions. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[16]  D. S. Hobbs,et al.  High-efficiency liquid-crystal optical phased-array beam steering. , 1996, Optics letters.

[17]  Jiangtao Cheng,et al.  Adaptive beam tracking and steering via electrowetting-controlled liquid prism , 2011 .

[18]  Jiwoo Hong,et al.  Enhancement of response speed of viscous fluids using overdrive voltage , 2015 .

[19]  J. Heikenfeld,et al.  A full description of a scalable microfabrication process for arrayed electrowetting microprisms , 2010 .

[20]  Wayne C. Welch,et al.  Airborne high spectral resolution lidar for profiling aerosol optical properties. , 2008, Applied optics.

[21]  Igor Stamenov,et al.  Optimization of high-performance monocentric lenses. , 2013, Applied optics.

[22]  Matthew Hayman,et al.  Polarization lidar for shallow water depth measurement. , 2010, Applied optics.

[23]  Sung Yong Park,et al.  High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method , 2016 .

[24]  Juliet T Gopinath,et al.  Adaptive electrowetting lens-prism element. , 2015, Optics express.

[25]  Scott R. Davis,et al.  Analog, non-mechanical beam-steerer with 80 degree field of regard , 2008, SPIE Defense + Commercial Sensing.

[26]  Jeffrey P. Thayer,et al.  Ranging through Shallow Semitransparent Media with Polarization Lidar , 2014 .

[27]  Peter Bechtold,et al.  Electro-optic and Acousto-optic Laser Beam Scanners , 2014 .

[28]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[29]  John Ralston,et al.  Electrowetting of ionic liquids. , 2006, Journal of the American Chemical Society.

[30]  Philip J. Bos,et al.  Wide-angle achromatic prism beam steering for infrared countermeasure applications , 2003 .

[31]  David B. Cole,et al.  Coherent solid-state LIDAR with silicon photonic optical phased arrays. , 2017, Optics letters.

[32]  Tomasz S Tkaczyk,et al.  Miniature, minimally invasive, tunable endoscope for investigation of the middle ear. , 2015, Biomedical optics express.

[33]  John L. Goodman,et al.  History of Space Shuttle Rendezvous and Proximity Operations , 2006 .

[34]  Joachim Janes,et al.  High-Q MEMS Resonators for Laser Beam Scanning Displays , 2012, Micromachines.

[35]  G W Kattawar,et al.  Time of flight lidar measurements as an ocean probe. , 1972, Applied optics.

[36]  Yi-Chin Fang,et al.  A study of optical design and optimization of zoom optics with liquid lenses through modified genetic algorithm. , 2011, Optics express.

[37]  Hans Zappe,et al.  Optofluidic laser scanner based on a rotating liquid prism. , 2016, Applied optics.

[38]  Jason Heikenfeld,et al.  Agile wide-angle beam steering with electrowetting microprisms. , 2006, Optics express.

[39]  F. Mugele,et al.  High speed adaptive liquid microlens array. , 2012, Optics express.

[40]  E. Næsset,et al.  Laser scanning of forest resources: the nordic experience , 2004 .

[41]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[42]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[43]  P. Sen,et al.  A Fast Liquid-Metal Droplet Microswitch Using EWOD-Driven Contact-Line Sliding , 2009, Journal of microelectromechanical systems.