Communication: He-tagged vibrational spectra of the SarGlyH⁺ and H⁺(H₂O)(2,3) ions: quantifying tag effects in cryogenic ion vibrational predissociation (CIVP) spectroscopy.

To assess the degree to which more perturbative, but widely used "tag" species (Ar, H2, Ne) affect the intrinsic band patterns of the isolated ions, we describe the extension of mass-selective, cryogenic ion vibrational spectroscopy to the very weakly interacting helium complexes of three archetypal ions: the dipeptide SarGlyH(+) and the small protonated water clusters: H(+)(H2O)(2,3), including the H5O2(+) "Zundel" ion. He adducts were generated in a 4.5 K octopole ion trap interfaced to a double-focusing, tandem time-of-flight photofragmentation mass spectrometer to record mass-selected vibrational predissociation spectra. The H2 tag-induced shift (relative to that by He) on the tag-bound NH stretch of the SarGlyH(+) spectrum is quite small (12 cm(-1)), while the effect on the floppy H5O2(+) ion is more dramatic (125 cm(-1)) in going from Ar (or H2) to Ne. The shifts from Ne to He, on the other hand, while quantitatively significant (maximum of 10 cm(-1)), display the same basic H5O2(+) band structure, indicating that the He-tagged H5O2(+) spectrum accurately represents the delocalized nature of the vibrational zero-point level. Interestingly, the He-tagged spectrum of H(+)(H2O)3 reveals the location of the non-bonded OH group on the central H3O(+) ion to fall between the collective non-bonded OH stretches on the flanking water molecules in a position typically associated with a neutral OH group.

[1]  D. Gerlich,et al.  Probing isomers of the benzene dication in a low-temperature trap. , 2014, Journal of the American Chemical Society.

[2]  Mark A. Johnson,et al.  Cryogenic ion chemistry and spectroscopy. , 2014, Accounts of chemical research.

[3]  J. Maier,et al.  A Novel Method to Measure Electronic Spectra of Cold Molecular Ions , 2013 .

[4]  J. Ẑabka,et al.  Infrared spectroscopy of trapped molecular dications below 4K , 2013 .

[5]  V. Blum,et al.  Isomer-selective detection of hydrogen-bond vibrations in the protonated water hexamer. , 2013, Journal of the American Chemical Society.

[6]  K. Asmis,et al.  Structure and chemistry of the heteronuclear oxo-cluster [VPO4]•+: a model system for the gas-phase oxidation of small hydrocarbons. , 2013, Journal of the American Chemical Society.

[7]  A. Patzer,et al.  Infrared spectrum and structure of the adamantane cation: direct evidence for Jahn-Teller distortion. , 2012, Angewandte Chemie.

[8]  Mark A. Johnson,et al.  Vibrational manifestations of strong non-Condon effects in the H3O(+)·X3 (X = Ar, N2, CH4, H2O) complexes: a possible explanation for the intensity in the "association band" in the vibrational spectrum of water. , 2012, Physical chemistry chemical physics : PCCP.

[9]  Mark A. Johnson,et al.  Isomer-Specific IR-IR Double Resonance Spectroscopy of D2-Tagged Protonated Dipeptides Prepared in a Cryogenic Ion Trap. , 2012, The journal of physical chemistry letters.

[10]  Arron B. Wolk,et al.  Characterizing the Intramolecular H-bond and Secondary Structure in Methylated GlyGlyH+ with H2 Predissociation Spectroscopy , 2011, Journal of the American Society for Mass Spectrometry.

[11]  J. Roscioli,et al.  Tuning the intermolecular proton bond in the H5O2+ ‘Zundel ion’ scaffold , 2011 .

[12]  Scott J. Miller,et al.  Vibrational characterization of simple peptides using cryogenic infrared photodissociation of H2-tagged, mass-selected ions. , 2011, Journal of the American Chemical Society.

[13]  A. Fujii,et al.  Infrared photodissociation spectroscopy of H(+)(H2O)6·M(m) (M = Ne, Ar, Kr, Xe, H2, N2, and CH4): messenger-dependent balance between H3O(+) and H5O2(+) core isomers. , 2011, Physical chemistry chemical physics : PCCP.

[14]  Mark A. Johnson,et al.  Vibrational predissociation spectroscopy of the H2-tagged mono- and dicarboxylate anions of dodecanedioic acid , 2011 .

[15]  Oriol Vendrell,et al.  Full dimensional (15 dimensional) quantum-dynamical simulation of the protonated water-dimer IV: isotope effects in the infrared spectra of D(D2O)2(+), H(D2O)2(+), and D(H2O)2(+) isotopologues. , 2009, The Journal of chemical physics.

[16]  K. Asmis,et al.  Vibrational signatures of hydrogen bonding in the protonated ammonia clusters NH4(+)(NH3)(1-4). , 2008, The Journal of chemical physics.

[17]  Mark A. Johnson,et al.  Isolating the spectra of cluster ion isomers using Ar-"tag" -mediated IR-IR double resonance within the vibrational manifolds: Application to NO2- *H2O. , 2008, The Journal of chemical physics.

[18]  Oriol Vendrell,et al.  Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics. , 2007, The Journal of chemical physics.

[19]  K. Asmis,et al.  Mass-selective vibrational spectroscopy of vanadium oxide cluster ions. , 2007, Mass spectrometry reviews.

[20]  D. Gerlich Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions , 2007 .

[21]  Joel M Bowman,et al.  The vibrational predissociation spectra of the H5O2 +RGn(RG = Ar,Ne) clusters: correlation of the solvent perturbations in the free OH and shared proton transitions of the Zundel ion. , 2005, The Journal of chemical physics.

[22]  Evgeniy M. Myshakin,et al.  Spectral Signatures of Hydrated Proton Vibrations in Water Clusters , 2005, Science.

[23]  Mark A. Johnson,et al.  Fundamental excitations of the shared proton in the H3O2- and H5O2+ complexes. , 2005, The journal of physical chemistry. A.

[24]  Mark A. Johnson,et al.  Argon predissociation spectroscopy of the OH-.H2O and Cl-.H2O complexes in the 1000-1900 cm(-1) region: intramolecular bending transitions and the search for the shared-proton fundamental in the hydroxide monohydrate. , 2005, The journal of physical chemistry. A.

[25]  Joel M Bowman,et al.  Full-dimensional vibrational calculations for H5O2+ using an ab initio potential energy surface. , 2005, The Journal of chemical physics.

[26]  Joel M Bowman,et al.  Ab initio potential energy and dipole moment surfaces for H5O2 +. , 2005, The Journal of chemical physics.

[27]  Mark A. Johnson,et al.  Predissociation spectroscopy of the argon-solvated H5O2+ "zundel" cation in the 1000-1900 cm(-1) region. , 2004, The Journal of chemical physics.

[28]  K. Asmis,et al.  Formation and photodepletion of cluster ion–messenger atom complexes in a cold ion trap: Infrared spectroscopy of VO+, VO+2, and VO+3 , 2003 .

[29]  W. Klopper,et al.  Ab initio calculation of proton barrier and binding energy of the (H2O)OH− complex , 2002 .

[30]  O. Dopfer,et al.  High-resolution spectroscopy of cluster ions. , 2000, Chemical reviews.

[31]  J. T. Hougen,et al.  Vibration-Rotation Spectroscopy of the Hydrated Hydronium Ions H5O+2 and H9O+4 , 1994 .

[32]  S. Schlemmer,et al.  COLTRAP: a 22-pole ion trapping machine for spectroscopy at 4 K , 2014 .