Minimal stencil finite volume scheme with the discrete maximum principle

Abstract We propose a cell-centered finite volume (FV) scheme with the minimal stencil formed by the closest neighbouring cells. The discrete solution satisfies the discrete maximum principle and approximates the exact solution with second-order accuracy. The coefficients in the FV stencil depend on the solution; therefore, the FV scheme is nonlinear. The scheme is applied to a steady state advection-diffusion equation discretized on a general polygonal mesh.

[1]  Ivar Aavatsmark,et al.  Monotonicity of control volume methods , 2007, Numerische Mathematik.

[2]  Ragnar Winther,et al.  Convergence of multipoint flux approximations on quadrilateral grids , 2006 .

[3]  Daniil Svyatskiy,et al.  A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..

[4]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[5]  Gisbert Stoyan,et al.  On maximum principles for monotone matrices , 1986 .

[6]  Matthew E. Hubbard,et al.  Regular Article: Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids , 1999 .

[7]  Stefan Turek,et al.  Flux-corrected transport : principles, algorithms, and applications , 2005 .

[8]  Richard Liska,et al.  Enforcing the Discrete Maximum Principle for Linear Finite Element Solutions of Second-Order Elliptic Problems , 2007 .

[9]  Bradley T. Mallison,et al.  A compact multipoint flux approximation method with improved robustness , 2008 .

[10]  Daniil Svyatskiy,et al.  A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems , 2009, J. Comput. Phys..

[11]  Sergey Korotov,et al.  The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem , 2008 .

[12]  Ivan Kapyrin,et al.  Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions , 2012, J. Comput. Phys..

[13]  Gianmarco Manzini,et al.  A finite volume method for advection-diffusion problems in convection-dominated regimes , 2008 .

[14]  Zhiqiang Sheng,et al.  Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..

[15]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[16]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[17]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[18]  ShakibFarzin,et al.  A new finite element formulation for computational fluid dynamics , 1991 .

[19]  Yuri V. Vassilevski,et al.  A monotone nonlinear finite volume method for advection–diffusion equations on unstructured polyhedral meshes in 3D , 2010 .

[20]  Mayur Pal,et al.  Non‐linear flux‐splitting schemes with imposed discrete maximum principle for elliptic equations with highly anisotropic coefficients , 2011 .

[21]  Zhiqiang Sheng,et al.  The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes , 2011, J. Comput. Phys..

[22]  Alexandre Ern,et al.  Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .

[23]  Yu. V. Vassilevski,et al.  A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes , 2009 .

[24]  Daniil Svyatskiy,et al.  Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..

[25]  Dmitri Kuzmin,et al.  Algebraic Flux Correction I. Scalar Conservation Laws , 2005 .

[26]  D. Kuzmin,et al.  High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter , 2004 .

[27]  Guangwei Yuan,et al.  Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations ☆ , 2012 .

[28]  Enrico Bertolazzi,et al.  A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..

[29]  Sergey Korotov,et al.  Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..

[30]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[31]  Christophe Le Potier,et al.  Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés , 2005 .

[32]  Todd F. Dupont,et al.  Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..

[33]  Raphaèle Herbin,et al.  A nine point finite volume scheme for the simulation of diffusion in heterogeneous media , 2009 .

[34]  Róbert Horváth,et al.  Discrete maximum principles for FE solutions of nonstationary diffusion‐reaction problems with mixed boundary conditions , 2011 .