2 00 1 Instantons , Hilbert Schemes and Integrability ∗

We review the deformed instanton equations making connection with Hilbert schemes and integrable systems. A single U(1) instanton is shown to be anti-self-dual with respect to the Burns metric.

[1]  A. Perelomov,et al.  On the functional equation related to the quantum three-body problem , 2002, math-ph/0205032.

[2]  H. Braden,et al.  Singular phases of Seiberg–Witten integrable systems: weak and strong coupling , 2001 .

[3]  K. Takasaki Hyperelliptic integrable systems on K3 and rational surfaces , 2000, math/0007073.

[4]  H. Braden Rigidity, functional equations and the Calogero-Moser model , 2000, nlin/0005046.

[5]  A. Gorsky,et al.  Hilbert Schemes, Separated Variables, and D-Branes , 1999, hep-th/9901089.

[6]  A. Gorsky,et al.  Integrable Many-Body Systems and Gauge Theories , 2001 .

[7]  G. Wilson,et al.  Automorphisms and ideals of the Weyl algebra , 2000, math/0102190.

[8]  A. Gorsky,et al.  Duality in integrable systems and gauge theories , 1999, hep-th/9906235.

[9]  I. Krichever,et al.  Integrability : the Seiberg-Witten and Whitham equations , 2000 .

[10]  A. Mironov,et al.  The Ruijsenaars-Schneider model in the context of Seiberg-Witten theory , 1999 .

[11]  A. Mironov,et al.  On Double-Elliptic Integrable Systems. 1. A Duality Argument for the case of SU(2) , 1999 .

[12]  E. D'hoker,et al.  Seiberg-Witten Theory and Integrable Systems , 1999, hep-th/9903068.

[13]  中島 啓 Lectures on Hilbert schemes of points on surfaces , 1999 .

[14]  A. Mironov,et al.  Seiberg–Witten theory for a non-trivial compactification from five to four dimensions , 1998 .

[15]  C. Lazaroiu A noncommutative-geometric interpretation of the resolution of equivariant instanton moduli spaces , 1998, hep-th/9805132.

[16]  J. Byatt-Smith,et al.  On a Functional Differential Equation of Determinantal Type , 1998, math/9804082.

[17]  N. Nekrasov On a Duality in Calogero-Moser-Sutherland Systems , 1997, hep-th/9707111.

[18]  K. Taniguchi On uniqueness of commutative rings of Weyl group invariant differential operators , 1997 .

[19]  A. Hone,et al.  Affine Toda Solitons and Systems of Calogero-Moser Type , 1996, hep-th/9603178.

[20]  N. Warner,et al.  INTEGRABLE SYSTEMS AND SUPERSYMMETRIC GAUGE THEORY , 1995, hep-th/9509161.

[21]  Nikita A. Nekrassov Four dimensional holomorphic theories , 1996 .

[22]  V. Buchstaber,et al.  The general analytic solution of a functional equation of addition type , 1995, funct-an/9508002.

[23]  A.Morozov,et al.  Integrability and Seiberg-Witten exact solution , 1995, hep-th/9505035.

[24]  T. Oshima,et al.  Commuting families of differential operators invariant under the action of a Weyl group , 1995 .

[25]  V. Buchstaber,et al.  Integrable Systems with Pairwise Interactions and Functional Equations , 1994, hep-th/9411240.

[26]  A. Veselov,et al.  Shift operators for the quantum Calogero-Sutherland problems via Knizhnik-Zamolodchikov equation , 1994 .

[27]  T. Oshima,et al.  Commuting families of symmetric differential operators , 1994 .

[28]  A. Matsuo Integrable connections related to zonal spherical functions , 1992 .

[29]  T. Berger,et al.  Manifolds and modular forms , 1992 .

[30]  F. Calogero,et al.  General analytic solution of certain functional equations of addition type , 1990 .

[31]  V. Inozemtsev The finite Toda lattices , 1989 .

[32]  V. Inozemtsev Lax representation with spectral parameter on a torus for integrable particle systems , 1989 .

[33]  E. Gutkin Integrable many-body problems and functional equations , 1988 .

[34]  F. Calogero,et al.  The Lax representation for an integrable class of relativistic dynamical systems , 1987 .

[35]  S. Ruijsenaars,et al.  A new class of integrable systems and its relation to solitons , 1986 .

[36]  S. Donaldson Instantons and geometric invariant theory , 1984 .

[37]  P. Goddard,et al.  Construction of instanton and monopole solutions and reciprocity , 1984 .

[38]  A. Perelomov,et al.  Classical integrable finite-dimensional systems related to Lie algebras , 1981 .

[39]  Shlomo Sternberg,et al.  Hamiltonian group actions and dynamical systems of calogero type , 1978 .

[40]  F. Calogero On a functional equation connected with integrable many-body problems , 1976 .

[41]  F. Calogero Exactly solvable one-dimensional many-body problems , 1975 .

[42]  B. Sutherland Exact ground state wave function for a one-dimensional plasma , 1975 .

[43]  B. Sutherland Exact results for a quantum many body problem in one-dimension , 1971 .