Reactive infiltration synthesis of TiB2–TiC particulates reinforced steel matrix composites

[1]  Q. Jiang,et al.  Fabrication of TiB2 and TiB2–TiC particulates reinforced magnesium matrix composites , 2004 .

[2]  Huiyuan Wang,et al.  Effect of Al content on the self-propagating high-temperature synthesis reaction of Al–Ti–C system in molten magnesium , 2004 .

[3]  X.L. Li,et al.  Effect of the Temperature of Molten Magnsium on the Thermal Explosion Synthesis Reaction of Al–Ti–C System for Fabricating TiC/Mg Composite , 2003 .

[4]  R. Yuan,et al.  Composites fabricated by self-propagating high-temperature synthesis , 2003 .

[5]  Huiyuan Wang,et al.  Fabrication of TiC particulate reinforced magnesium matrix composites , 2003 .

[6]  Jiecai Han,et al.  Combustion synthesis and densification of large-scale TiC-xNi cermets , 2002 .

[7]  K. Das,et al.  A Review on the various synthesis routes of TiC reinforced ferrous based composites , 2002 .

[8]  P. Shipway,et al.  A comparison of the reciprocating sliding wear behaviour of steel based metal matrix composites processed from self-propagating high-temperature synthesised Fe-TiC and Fe-TiB2 masteralloys , 2002 .

[9]  E. Olevsky,et al.  Combustion synthesis and quasi-isostatic densification of powder cermets , 2002 .

[10]  Yisan Wang,et al.  In situ production of Fe-VC and Fe-TiC surface composites by cast-sintering , 2001 .

[11]  Sie Chin Tjong,et al.  Microstructural and mechanical characteristics of in situ metal matrix composites , 2000 .

[12]  S. Tjong,et al.  Abrasion resistance of stainless-steel composites reinforced with hard TiB2 particles , 2000 .

[13]  Quncheng Fan,et al.  Mechanism of combustion synthesis of TiC–Fe cermet , 1999 .

[14]  M. Fujita,et al.  High-temperature-shock compaction of ceramics/silicide composites produced by combustion synthesis , 1999 .

[15]  V. Lindroos,et al.  Processing and properties of particulate reinforced steel matrix composites , 1998 .

[16]  Li Lu,et al.  Al-4 wt% Cu Composite reinforced with in-situ TiB2 particles , 1997 .

[17]  Ying Chen Ball milling assisted low temperature formation of iron-TiC composite , 1997 .

[18]  A. Saidi,et al.  Reaction Synthesis of TiC and Fe-TiC Composites* , 1997 .

[19]  H. Fredriksson,et al.  On the precipitation of TiC in liquid iron by reactions between different phases , 1997 .

[20]  A. Gant,et al.  Microstructural Development and Sintering Kinetics in Ceramic Reinforced High Speed Steel Metal Matrix Composites , 1997 .

[21]  V. Lindroos,et al.  Influence of matrix structure on the abrasion wear resistance and toughness of a hot isostatic pressed white iron matrix composite , 1996 .

[22]  M. Gasik,et al.  Rapidly solidified Fe-TiC composites: Thermodynamics and the peculiarities of microstructure formation in situ , 1996 .

[23]  P. Rohatgi,et al.  In situ technique for synthesizing Fe-TiC composites , 1995 .

[24]  H. Feng,et al.  Combustion synthesis of advanced materials: Part II. Classification, applications and modelling , 1995 .

[25]  John J. Moore,et al.  Combustion synthesis of advanced materials: Part I. Reaction parameters , 1995 .

[26]  I. Gotman,et al.  Fabrication of Al matrix in situ composites via self-propagating synthesis , 1994 .

[27]  A. Chrysanthou,et al.  Characteristics of the combustion synthesis of TiC and Fe-TiC composites , 1994 .

[28]  M. Mullins,et al.  Fabrication of metal matrix composites of , 1992, Metallurgical and Materials Transactions A.

[29]  B. Terry,et al.  Carbothermic reduction of ilmenite and rutile as means of production of iron based Ti(O,C) metal matrix composites , 1991 .

[30]  J. B. Holt,et al.  An investigation of the synthesis of nickel aluminides through gasless combustion , 1987 .

[31]  A. Panasyuk,et al.  Physicochemical principles of the formation of composite materials based on titanium diboride , 1986 .