Transferring Nanoscale Bainite Concept to Lower C Contents: A Perspective

The major strengthening mechanisms in bainitic steels arise from the bainitic ferrite plate thickness rather than the length, which primarily determines the mean free slip distance. Both the strength of the austenite from where the bainite grows and the driving force of the transformation, are the two factors controlling the final scale of the bainitic microstructure. Usually, those two parameters can be tailored by means of selection of chemical composition and transformation temperature. However, there is also the possibility of introducing plastic deformation on austenite and prior to the bainitic transformation as a way to enhance both the austenite strength and the driving force for the transformation; the latter by introducing a mechanical component to the free energy change. This process, known as ausforming, has awoken a great deal of interest and it is the object of ongoing research with two clear aims. First, an acceleration of the sluggish bainitic transformation observed typically in high C steels (0.7–1 wt. %) transformed at relatively low temperatures. Second, to extend the concept of nanostructured bainite from those of high C steels to much lower C contents, 0.4–0.5 wt. %, keeping a wider range of applications in view.

[1]  Guang Xu,et al.  Effects of Strain and Deformation Temperature on Bainitic Transformation in a Fe–C–Mn–Si Alloy , 2017 .

[2]  B. Avishan,et al.  Transformation kinetics and microstructural features in Low-Temperature Bainite after ausforming process , 2016 .

[3]  Fucheng Zhang,et al.  Producing superfine low-carbon bainitic structure through a new combined thermo-mechanical process , 2016 .

[4]  Guang Xu,et al.  Combined effect of the prior deformation and applied stress on the bainite transformation , 2016, Metals and Materials International.

[5]  Kyung Il Kim,et al.  Control of retained austenite morphology through double bainitic transformation , 2016 .

[6]  Xuefei Huang,et al.  Microstructure and mechanical properties of a medium-carbon bainitic steel by a novel quenching and dynamic partitioning (Q-DP) process , 2016 .

[7]  B. Avishan,et al.  Effect of 10% ausforming on impact toughness of nano bainite austempered at 300 °C , 2016 .

[8]  S. Kundu,et al.  Formation of bainite below the MS temperature: Kinetics and crystallography , 2016 .

[9]  Fucheng Zhang,et al.  Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels , 2016 .

[10]  T. Sourmail,et al.  Bainitic Steel: Nanostructured , 2016 .

[11]  L. Qi,et al.  Effects of the multi-step ausforming process on the microstructure evolution of nanobainite steel , 2016 .

[12]  Guang Xu,et al.  The effects of external compressive stress on the kinetics of low temperature bainitic transformation and microstructure in a superbainite steel , 2015 .

[13]  Hongli Fan,et al.  Acceleration of nanobainite transformation by multi-step ausforming process , 2015 .

[14]  J. Sietsma,et al.  Isothermal transformations in advanced high strength steels below martensite start temperature , 2015 .

[15]  S. Primig,et al.  Structural characterization of “carbide-free” bainite in a Fe–0.2C–1.5Si–2.5Mn steel , 2015 .

[16]  A. Zhao,et al.  Acceleration of Bainite Transformation at Low Temperature by Warm Rolling Process , 2015 .

[17]  F. C. Zhang,et al.  Carbide-free bainite in medium carbon steel , 2014 .

[18]  M. Zhang,et al.  Effects of ausforming on isothermal bainite transformation behaviour and microstructural refinement in medium-carbon Si–Al-rich alloy steel , 2014 .

[19]  T. Sourmail,et al.  Industrialised nanocrystalline bainitic steels. Design approach , 2014 .

[20]  E. Vuorinen,et al.  Nanostructured steel industrialisation: plausible reality , 2014 .

[21]  F. Hu,et al.  Multi-step isothermal bainitic transformation in medium-carbon steel , 2014 .

[22]  M. Zhang,et al.  Austenite deformation behavior and the effect of ausforming process on martensite starting temperature and ausformed martensite microstructure in medium-carbon Si–Al-rich alloy steel , 2014 .

[23]  Z. Fucheng,et al.  Low-temperature bainite in low-carbon steel , 2014 .

[24]  C. Capdevila,et al.  An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels , 2013 .

[25]  Shu Yan Zhang,et al.  Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel , 2013 .

[26]  Kyong-Su Park,et al.  Prediction of Martensite Start Temperature in Alloy Steels with Different Grain Sizes , 2013, Metallurgical and Materials Transactions A.

[27]  Z. Fucheng,et al.  A novel bainitic steel comparable to maraging steel in mechanical properties , 2013 .

[28]  M. Zhang,et al.  Preparation of nanostructured bainite in medium-carbon alloysteel , 2013 .

[29]  T. Sourmail,et al.  Wear of nano-structured carbide-free bainitic steels under dry rolling–sliding conditions , 2013 .

[30]  H. Bhadeshia,et al.  Powder metallurgical nanostructured medium carbon bainitic steel: Kinetics, structure, and in situ thermal stability studies , 2012 .

[31]  A. Borgenstam,et al.  Direct Observation that Bainite can Grow Below MS , 2012, Metallurgical and Materials Transactions A.

[32]  Fucheng Zhang,et al.  Microstructure and mechanical properties of a low carbon carbide-free bainitic steel co-alloyed with Al and Si , 2012 .

[33]  T. Sourmail,et al.  Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon , 2012 .

[34]  I. Manna,et al.  Development of ultrafine ferritic sheaves/plates in SAE 52100 steel for enhancement of strength by controlled thermomechanical processing , 2012 .

[35]  J. Kobayashi,et al.  Notch-Fatigue Properties of Advanced TRIP-Aided Bainitic Ferrite Steels , 2012, Metallurgical and Materials Transactions A.

[36]  D. Suh,et al.  Promoting the coalescence of bainite platelets , 2012 .

[37]  H. Bhadeshia,et al.  More Complete Theory for the Calculation of the Martensite-Start Temperature in Steels , 2012 .

[38]  H. Bhadeshia,et al.  Mechanical stabilisation of retained austenite in δ-TRIP steel , 2011 .

[39]  T. Sourmail,et al.  Effect of Partial Martensite Transformation on Bainite Reaction Kinetics in Different 1%C Steels , 2011 .

[40]  P. Hodgson,et al.  Effect of composition and processing parameters on the formation of nano-bainite in advanced high strength steels , 2011 .

[41]  Dierk Raabe,et al.  Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging , 2011 .

[42]  H. Palkowski,et al.  Low temperature bainite in steel with 0.26 wt% C , 2010 .

[43]  M. Calcagnotto,et al.  Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels , 2010 .

[44]  Y. Adachi,et al.  Effect of ausforming on nanobainite steel , 2010 .

[45]  C. Capdevila,et al.  Toughness deterioration in advanced high strength bainitic steels , 2009 .

[46]  Indranil Manna,et al.  Development of ultrafine bainite+martensite duplex microstructure in SAE 52100 bearing steel by prior cold deformation , 2009 .

[47]  K. Sugimoto Fracture strength and toughness of ultra high strength TRIP aided steels , 2009 .

[48]  H. K. D. H. Bhadeshia,et al.  Austenite grain size and the martensite-start temperature , 2009 .

[49]  H. Bhadeshia,et al.  Coalesced bainite by isothermal transformation of reheated weld metal , 2008 .

[50]  J. Sietsma,et al.  Experimental evidence for bainite formation below Ms in Fe–0.66C , 2008 .

[51]  H. Bhadeshia,et al.  Designing low carbon, low temperature bainite , 2008 .

[52]  Francisca García Caballero,et al.  Dependence of martensite start temperature on fine austenite grain size , 2008 .

[53]  H. Palkowski,et al.  Ultra-fine Bainite Structure in Hypo-eutectoid Steels , 2007 .

[54]  E. Kozeschnik,et al.  Mechanical stabilisation of eutectoid steel , 2007 .

[55]  H. Bhadeshia,et al.  Bimodal size-distribution of bainite plates , 2006 .

[56]  J. Yang,et al.  Mechanical stabilisation of austenite , 2006 .

[57]  L. Karlsson,et al.  Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 1 – Effect of nickel content , 2006 .

[58]  Francisca García Caballero,et al.  Ultra-high-strength Bainitic Steels , 2005 .

[59]  H. Bhadeshia,et al.  Acceleration of Low-temperature Bainite , 2003 .

[60]  Francisca García Caballero,et al.  Very strong low temperature bainite , 2002 .

[61]  H. Bhadeshia,et al.  The bainite transformation: unresolved issues , 1999 .

[62]  H. Bhadeshia,et al.  Estimation of bainite plate-thickness in low-alloy steels , 1998 .

[63]  H. Bhadeshia,et al.  The mechanical stabilisation of Widmanstätten ferrite , 1997 .

[64]  T. Maki Current State and Future Prospect of Microstructure Control in Steels , 1995 .

[65]  H. Bhadeshia,et al.  Mechanical stabilisation of bainite , 1995 .

[66]  Y. Ohmori,et al.  Morphology of bainite and widmanstätten ferrite , 1994 .

[67]  K. Tsuzaki,et al.  Effect of prior deformation of austenite on the γ → ε martensitic transformation in Fe-Mn alloys , 1991 .

[68]  H. K. D. H. Bhadeshia,et al.  Bainite in silicon steels: New composition–property approach Part 1 , 1983 .

[69]  F. Frank,et al.  On deformation by twinning , 1955 .

[70]  L. Karlsson,et al.  Coalesced Bainite , 2022 .