Making Discrete Sugeno Integrals More Discriminant

This paper deals with qualitative evaluation processes when the worth of items is computed by means of Sugeno integral. One limitation of this approach is the coarse ranking of items it produces. In order to refine this ranking, generalizations of leximin and leximax to Sugeno integrals are studied. Numerical encodings of such generalized lexicographic methods are described by means of mappings from the qualitative value scale to the reals. In some of these transformations Sugeno integral is changed into a Choquet integral. The issue of refining the capacity at work in Sugeno integral also receives a preliminary examination. This work relies on a previous similar attempt at refining prioritized minimum and maximum aggregations (in the setting of decision under uncertainty) into a so-called big-stepped weighted average, encoding a very refined qualitative lexicographic ordering of items.

[1]  Thomas Whalen,et al.  Decisionmaking under uncertainty with various assumptions about available information , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[3]  F.C.A. Groen,et al.  Possibilistic decision making in sensor systhems , 1998 .

[4]  E. Pap Null-Additive Set Functions , 1995 .

[5]  Ronen I. Brafman,et al.  On the Axiomatization of Qualitative Decision Criteria , 1997, AAAI/IAAI.

[6]  Toshiaki Murofushi Lexicographic use of Sugeno integrals and monotonicity conditions , 2001, IEEE Trans. Fuzzy Syst..

[7]  Jean-Luc Marichal,et al.  On Sugeno integral as an aggregation function , 2000, Fuzzy Sets Syst..

[8]  Thierry Marchant,et al.  A Conjoint Measurement Approach to the Discrete Sugeno Integral , 2009, The Mathematics of Preference, Choice and Order.

[9]  Kenneth J. Arrow,et al.  Studies in Resource Allocation Processes: Appendix: An optimality criterion for decision-making under ignorance , 1977 .

[10]  Didier Dubois,et al.  A Unified framework for Order-of-magnitude Confidence Relations , 2004, UAI.

[11]  Alain Chateauneuf,et al.  Decomposable capacities, distorted probabilities and concave capacities , 1996 .

[12]  Yiyu Yao,et al.  Axiomatization of qualitative belief structure , 1991, IEEE Trans. Syst. Man Cybern..

[13]  Ronen I. Brafman,et al.  On the Foundations of Qualitative Decision Theory , 1996, AAAI/IAAI, Vol. 2.

[14]  Didier Dubois,et al.  Possibilistic and Standard Probabilistic Semantics of Conditional Knowledge Bases , 1997, J. Log. Comput..

[15]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[16]  A. Sen,et al.  Social Choice Theory , 1980 .

[17]  Jean-Luc Marichal,et al.  An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria , 2000, IEEE Trans. Fuzzy Syst..

[18]  Salvatore Greco,et al.  Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules , 2004, Eur. J. Oper. Res..

[19]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[20]  Judea Pearl,et al.  Specification and Evaluation of Preferences Under Uncertainty , 1994, KR.

[21]  D Dubois,et al.  Belief structures, possibility theory and decomposable confidence measures on finite sets , 1986 .

[22]  L. Gevers,et al.  Leximin and utilitarian rules: A joint characterization , 1978 .

[23]  H. Moulin Axioms of Cooperative Decision Making , 1988 .

[24]  Ronen I. Brafman,et al.  An axiomatic treatment of three qualitative decision criteria , 2000, JACM.

[25]  Didier Dubois,et al.  Lexicographic Refinements of Sugeno Integrals , 2007, ECSQARU.

[26]  Rakesh K. Sarin,et al.  A SIMPLE AXIOMATIZATION OF NONADDITIVE EXPECTED UTILITY , 1992 .

[27]  Didier Dubois,et al.  Qualitative Decision Theory with Sugeno Integrals , 1998, UAI.

[28]  Christophe Labreuche,et al.  Preference modeling on totally ordered sets by the Sugeno integral , 2005, Discret. Appl. Math..

[29]  Didier Dubois,et al.  Refinements of the maximin approach to decision-making in a fuzzy environment , 1996, Fuzzy Sets Syst..

[30]  Hélène Fargier,et al.  Qualitative Decision under Uncertainty: Back to Expected Utility , 2003, IJCAI.

[31]  Didier Dubois,et al.  Possibility Theory as a Basis for Qualitative Decision Theory , 1995, IJCAI.

[32]  K. Arrow,et al.  Social Choice and Individual Values , 1951 .

[33]  M. Sugeno FUZZY MEASURES AND FUZZY INTEGRALS—A SURVEY , 1993 .

[34]  Didier Dubois,et al.  Decision-theoretic foundations of qualitative possibility theory , 2001, Eur. J. Oper. Res..

[35]  Richmond H. Thomason,et al.  Desires and Defaults: A Framework for Planning with Inferred Goals , 2000, KR.

[36]  A. Sen,et al.  Chapter 22 Social choice theory , 1986 .

[37]  Michel Grabisch,et al.  The Möbius transform on symmetric ordered structures and its application to capacities on finite sets , 2004, Discret. Math..

[38]  Craig Boutilier,et al.  Toward a Logic for Qualitative Decision Theory , 1994, KR.

[39]  M. Sugeno,et al.  Fuzzy Measures and Integrals: Theory and Applications , 2000 .

[40]  David Schmeidleis SUBJECTIVE PROBABILITY AND EXPECTED UTILITY WITHOUT ADDITIVITY , 1989 .

[41]  Zhenyuan Wang The autocontinuity of set function and the fuzzy integral , 1984 .

[42]  Wang Zhenyuan,et al.  Asymptotic structural characteristics of fuzzy measure and their applications , 1983 .