Riordan arrays and harmonic number identities

Let the numbers P(r,n,k) be defined by P(r,n,k):=P"r(H"n^(^1^)-H"k^(^1^),...,H"n^(^r^)-H"k^(^r^)), where P"r(x"1,...,x"r)=(-1)^rY"r(-0!x"1,-1!x"2,...,-(r-1)!x"r) and Y"r are the exponential complete Bell polynomials. By observing that the numbers P(r,n,k) generate two Riordan arrays, we establish several general summation formulas, from which series of harmonic number identities are obtained. In particular, some of these harmonic number identities also involve other special combinatorial sequences, such as the Stirling numbers of both kinds, the Lah numbers, the Bernoulli numbers and polynomials and the Cauchy numbers of both kinds.

[1]  Derek A. Zave,et al.  A Series Expansion Involving the Harmonic Numbers , 1976, Inf. Process. Lett..

[2]  C. Jordan,et al.  Calculus of Finite Differences. , 1963 .

[3]  Russell Lyons,et al.  A Computer Proof of a Series Evaluation in Terms of Harmonic Numbers , 2002, Applicable Algebra in Engineering, Communication and Computing.

[4]  Jürgen Spiess,et al.  Some identities involving harmonic numbers , 1990 .

[5]  Carsten Schneider,et al.  Gaussian Hypergeometric series and supercongruences , 2006, Math. Comput..

[6]  Renzo Sprugnoli,et al.  Riordan arrays and combinatorial sums , 1994, Discret. Math..

[7]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[8]  Anthony Sofo,et al.  Sums of derivatives of binomial coefficients , 2009, Adv. Appl. Math..

[9]  Anthony Sofo Integral forms of sums associated with harmonic numbers , 2009, Appl. Math. Comput..

[10]  Helmut Prodinger,et al.  Padé approximations to the logarithm II: Identities, recurrences, and symbolic computation , 2006 .

[11]  Feng-Zhen Zhao Sums of products of Cauchy numbers , 2009, Discret. Math..

[12]  Moawwad E. A. El-Mikkawy,et al.  Generalized harmonic numbers with Riordan arrays , 2008 .

[13]  Carsten Schneider,et al.  Computer proofs of a new family of harmonic number identities , 2003, Adv. Appl. Math..

[14]  Renzo Sprugnoli,et al.  Riordan arrays and the Abel-Gould identity , 1995, Discret. Math..

[15]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science (2. ed.) , 1994 .

[16]  Helmut Prodinger,et al.  Padé approximations to the logarithm III: Alternative methods and additional results , 2006 .

[17]  Sang-Gu Lee,et al.  Several polynomials associated with the harmonic numbers , 2007, Discret. Appl. Math..

[18]  N. E. Nörlund Vorlesungen über Differenzenrechnung , 1924 .

[19]  Wenchang Chu,et al.  Hypergeometric series and harmonic number identities , 2005, Adv. Appl. Math..

[20]  Wenchang Chu,et al.  Harmonic number identities and Hermite-Padé approximations to the logarithm function , 2005, J. Approx. Theory.

[21]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1958 .

[22]  Renzo Sprugnoli,et al.  The Cauchy numbers , 2006, Discret. Math..

[23]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[24]  Wenchang Chu,et al.  A Binomial Coefficient Identity Associated with Beukers' Conjecture on Apery numbers , 2004, Electron. J. Comb..

[25]  Some More Identities Involving Rational Sums , 2008 .

[26]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[27]  Wenchang Chu,et al.  Dougall–Dixon formula and harmonic number identities , 2009 .

[28]  Károly Jordán Calculus of finite differences , 1951 .