Recent advances in millimeter-wave radars

The usage of millimeter-wave radar systems is widened to a number of civil applications including: airborne radars for obstacle avoidance, altimetry and landing aids, automotive radars for collision avoidance, driving safety support, autonomous vehicle control, meteorological radars, radars for remote sensing applications, and radars for medical imaging and diagnostic. We review some of these developments supported by advances in millimeter-wave components and achievements in signal processing technique. A recently developed at the Institute of Radio Astronomy ground based millimeter-wave synthetic aperture radar (SAR) is described in more details as an example of the activity in the field. The hardware and software solutions introduced into the radar are described along with the results of the first radar tests.

[1]  Carlos López-Martínez,et al.  Polarimetric Temporal Analysis of Urban Environments With a Ground-Based SAR , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[2]  D. M. Vavriv,et al.  Millimeter-Wave Radars for Environmental Studies , 2004 .

[3]  S. V. Sosnytskiy DEALIASING DOPPLER SPECTRA IN METEOROLOGICAL RADARS , 2012 .

[4]  O. O. Bezvesilniy,et al.  Retrieving the median droplet diameter from Ka‐ and W‐band dual‐wavelength Doppler radar measurements , 2007 .

[5]  Robin J. Evans,et al.  Single-chip millimeter wave radar , 2015 .

[6]  E. M. Hartwell Boston , 1906 .

[7]  A. Tessmann,et al.  SUMATRA, a W-band SAR for UAV application , 2009, 2009 International Radar Conference "Surveillance for a Safer World" (RADAR 2009).

[8]  Helmut Essen,et al.  Miniaturized high resolution Synthetic Aperture Radar at 94 GHz for microlite aircraft or UAV , 2011, 2011 IEEE SENSORS Proceedings.

[9]  Oleksandr O. Bezvesilniy,et al.  Synthetic Aperture Radar Systems for Small Aircrafts: Data Processing Approaches , 2012 .

[10]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[11]  Vadym Volkov,et al.  Magnetron Based Radar Systems for Millimeter Wavelength Band – Modern Approaches and Prospects , 2010 .

[12]  H. Essen,et al.  High resolution millimetre wave measurement radars for ground based SAR and ISAR imaging , 2008, 2008 IEEE Radar Conference.

[13]  Motoyuki Sato,et al.  Landslide observation by ground-based SAR interferometry , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[14]  Carlo Atzeni,et al.  DEM by Ground-Based SAR Interferometry , 2007, IEEE Geoscience and Remote Sensing Letters.

[15]  Oleksandr O. Bezvesilniy,et al.  Millimeter-Wavelength Meteorological Radars , 2008 .

[16]  Joaquim Fortuny-Guasch,et al.  A GB-SAR Processor for Snow Avalanche Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[17]  S. M. Sekelsky,et al.  Millimeter-wave radars for remotely sensing clouds and precipitation , 1994 .

[18]  Carlo Atzeni,et al.  Monitoring of an Alpine Glacier by Means of Ground-Based SAR Interferometry , 2007, IEEE Geoscience and Remote Sensing Letters.

[19]  Pavlos Kollias,et al.  G band atmospheric radars: new frontiers in cloud physics , 2014 .

[20]  V. A. Volkov,et al.  Cost-Effective Airborne SAR , 2006 .

[21]  Helmut Essen,et al.  High resolution millimeter wave SAR interferometry , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[22]  K. Schunemann,et al.  95 GHz Doppler Polarimetric Cloud Radar Based on a Magnetron Transmitter , 2002, 2002 32nd European Microwave Conference.

[23]  S. M. Sekelsky,et al.  Millimeter-wave radars for remotely sensing clouds and precipitation , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[24]  O. O. Bezvesilniy,et al.  X-band SAR system for light-weight aircrafts , 2014, 2014 15th International Radar Symposium (IRS).

[25]  A. Bemis Radar in Meteorology , 1955, Transactions of the IRE Professional Group on Communications Systems.

[26]  Oleksandr O. Bezvesilniy,et al.  Developing SAR for small aircrafts in Ukraine , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[27]  Oleksandr O. Bezvesilniy,et al.  Retrieving 3-D Topography by Using a Single-Antenna Squint-Mode Airborne SAR , 2007, IEEE Transactions on Geoscience and Remote Sensing.