Upconverter solar cells: materials and applications

Spectral conversion of sunlight is a promising route to reduce spectral mismatch losses that are responsible for the major part of the efficiency losses in solar cells. Both upconversion and downconversion materials are presently explored. In an upconversion process, photons with an energy lower than the band gap of the solar cell are converted to higher energy photons. These higher photons are directed back to the solar cell and absorbed, thus increasing the efficiency. Different types of upconverter materials are investigated, based on luminescent ions or organic molecules. Proof of principle experiments with lanthanide ion based upconverters have indicated that the benefit of an upconversion layer is limited by the high light intensities needed to reach high upconversion quantum efficiencies. To address this limitation, upconverter materials may be combined with quantum dots or plasmonic particles to enhance the upconversion efficiency and improve the feasibility of applying upconverters in commercial solar cells.

[1]  Jun-Ho Yum,et al.  Panchromatic engineering for dye-sensitized solar cells , 2011 .

[2]  Yalin Lu,et al.  Enhancing near-infrared solar cell response using upconverting transparentceramics , 2011 .

[3]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[4]  W.G.J.H.M. van Sark,et al.  Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors , 2010 .

[5]  Felix N. Castellano,et al.  Photon upconversion based on sensitized triplet-triplet annihilation , 2010 .

[6]  W.G.J.H.M. van Sark,et al.  Towards upconversion for amorphous silicon solar cells , 2010 .

[7]  Antonio Luque,et al.  Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots , 2010 .

[8]  G. Demopoulos,et al.  Near‐Infrared Sunlight Harvesting in Dye‐Sensitized Solar Cells Via the Insertion of an Upconverter‐TiO2 Nanocomposite Layer , 2010, Advanced materials.

[9]  F. Castellano,et al.  Supermolecular-chromophore-sensitized near-infrared-to-visible photon upconversion. , 2010, Journal of the American Chemical Society.

[10]  G. H. Bauer,et al.  Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization , 2010 .

[11]  Chenglin Yan,et al.  Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er nanoheterostructures. , 2010, Journal of the American Chemical Society.

[12]  Maxwell J. Crossley,et al.  Kinetic Analysis of Photochemical Upconversion by Triplet−Triplet Annihilation: Beyond Any Spin Statistical Limit , 2010 .

[13]  Oliver Benson,et al.  Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. , 2010, Nano letters.

[14]  B. van der Ende,et al.  Lanthanide ions as spectral converters for solar cells. , 2009, Physical chemistry chemical physics : PCCP.

[15]  M. Bonn,et al.  Assessment of carrier-multiplication efficiency in bulk PbSe and PbS , 2009 .

[16]  Lin-wang Wang Computational challenges for nanostructure solar cells , 2009 .

[17]  Junqiao Wu,et al.  Third generation photovoltaics , 2009 .

[18]  Jean M. J. Fréchet,et al.  Increased light harvesting in dye-sensitized solar cells with energy relay dyes , 2009 .

[19]  Gang Chen,et al.  Nanoscale design to enable the revolution in renewable energy , 2009, Energy & Environmental Science.

[20]  A. C. Pan,et al.  Characterization of up-converter layers on bifacial silicon solar cells , 2009 .

[21]  Joseph P. Dinnocenzo,et al.  Low-power green-to-blue and blue-to-UV upconversion in rigid polymer films , 2009 .

[22]  R. Tubino,et al.  Effect of an external magnetic field on the up-conversion photoluminescence of organic films: the role of disorder in triplet-triplet annihilation. , 2009, Physical review letters.

[23]  P. Hebert,et al.  III–V multijunction solar cells for concentrating photovoltaics , 2009 .

[24]  S. Glunz,et al.  Neodymium‐doped fluorochlorozirconate glasses as an upconversion model system for high efficiency solar cells , 2008 .

[25]  Raymond Ziessel,et al.  Boron dipyrromethene chromophores: next generation triplet acceptors/annihilators for low power upconversion schemes. , 2008, Journal of the American Chemical Society.

[26]  Stanislav Baluschev,et al.  Towards the IR limit of the triplet-triplet annihilation-supported up-conversion: tetraanthraporphyrin. , 2008, Chemistry.

[27]  Lili Wang,et al.  Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals. , 2008, Optics Express.

[28]  G. Conibeer,et al.  Third generation photovoltaics , 2007, 2008 2nd Electronics System-Integration Technology Conference.

[29]  S. Baluschev,et al.  A general approach for non-coherently excited annihilation up-conversion: transforming the solar-spectrum , 2008 .

[30]  Christoph Weder,et al.  Noncoherent low-power upconversion in solid polymer films. , 2007, Journal of the American Chemical Society.

[31]  A. Shalav,et al.  Enhancing the Near-Infrared Spectral Response of Silicon Optoelectronic Devices via Up-Conversion , 2007, IEEE Transactions on Electron Devices.

[32]  M. Haase,et al.  Lanthanide-Doped NaYF4 Nanocrystals in Aqueous Solution Displaying Strong Up-Conversion Emission , 2007 .

[33]  M. McCann,et al.  Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials , 2007 .

[34]  Ewold Verhagen,et al.  Enhanced nonlinear optical effects with a tapered plasmonic waveguide. , 2007, Nano letters.

[35]  John-Christopher Boyer,et al.  Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. , 2006, Nano letters.

[36]  M. Green,et al.  Efficiency enhancement of solar cells by luminescent up-conversion of sunlight , 2006 .

[37]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[38]  G. Wegner,et al.  Up-conversion fluorescence: noncoherent excitation by sunlight. , 2006, Physical review letters.

[39]  B. Richards Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers , 2006 .

[40]  Harald Müllejans,et al.  Performance of Thin Film PV Modules , 2006 .

[41]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[42]  H. Güdel,et al.  Er, Yb Doped Yttrium Based Nanosized Phosphors: Particle Size, “Host Lattice” and Doping Ion Concentration Effects on Upconversion Efficiency , 2006, Journal of Fluorescence.

[43]  Judith Grimm,et al.  Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+ , 2006 .

[44]  Akio Yasuda,et al.  Metal-enhanced up-conversion fluorescence: effective triplet-triplet annihilation near silver surface. , 2005, Nano letters.

[45]  F. Castellano,et al.  Low power upconversion using MLCT sensitizers. , 2005, Chemical communications.

[46]  Judith Grimm,et al.  Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+ , 2005 .

[47]  W. V. Sark,et al.  Enhancing solar cell efficiency by using spectral converters , 2005 .

[48]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[49]  H. Güdel,et al.  Anomalous power dependence of sensitized upconversion luminescence , 2005 .

[50]  K. Krämer,et al.  Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion , 2005 .

[51]  A. Shalav,et al.  Application of NaYF 4 : Er 3 + up-converting phosphors for enhanced near-infrared silicon solar cell response , 2005 .

[52]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[53]  J. Springer,et al.  Improved three-dimensional optical model for thin-film silicon solar cells , 2004 .

[54]  K. Krämer,et al.  V3+ sensitized upconversion in Cs2NaScCl6:Pr3+;V3+ and K2NaScF6:Er3+;V3+ , 2004 .

[55]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[56]  Markus P. Hehlen,et al.  Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors , 2004 .

[57]  H. Güdel,et al.  Near-infrared to green photon upconversion in Mn2+ and Yb3+ doped lattices , 2004 .

[58]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[59]  P. E. Keivanidis,et al.  Up‐Conversion Photoluminescence in Polyfluorene Doped with Metal(II)–Octaethyl Porphyrins , 2003 .

[60]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[61]  K. Krämer,et al.  Broad-band Cr5+-sensitized Er3+ luminescence in YVO4 , 2003 .

[62]  M. Green,et al.  Improving solar cell efficiencies by up-conversion of sub-band-gap light , 2002 .

[63]  Maurizio Ferrari,et al.  Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics , 2002 .

[64]  H. Güdel,et al.  Excited-State Dynamics and Sequential Two-Photon Upconversion Excitation of Mo3+-Doped Chloro- and Bromo-elpasolites , 2000 .

[65]  M. Wermuth,et al.  Up-conversion processes of 5d transition metal ions in crystals , 1999 .

[66]  A. Meijerink,et al.  Visible quantum cutting in LiGdF4:Eu3+ through downconversion , 1999, Science.

[67]  Ralph H. Page,et al.  Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium , 1997 .

[68]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[69]  P. Würfel,et al.  Solar energy conversion with hot electrons from impact ionisation , 1997 .

[70]  P. Gibart,et al.  Below Band-Gap IR Response of Substrate-Free GaAs Solar Cells Using Two-Photon Up-Conversion , 1996 .

[71]  F. Pellé,et al.  INFRARED-TO-VISIBLE CONVERSION LUMINESCENCE OF TM3+ AND YB3+ IONS IN GLASS-CERAMICS , 1994 .

[72]  Junichi Ohwaki,et al.  Efficient 1.5 µm to Visible Upconversion in Er3+-Doped Halide Phosphors , 1994 .

[73]  Martin A. Green,et al.  Optimized antireflection coatings for high-efficiency silicon solar cells , 1991 .

[74]  Anne C. Tropper,et al.  Frequency upconversion in Tm- and Yb:Tm-doped silica fibers , 1990 .

[75]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[76]  F. Auzel Rare Earth Doped Vitroceramics: New, Efficient, Blue and Green Emitting Materials for Infrared Up‐Conversion , 1975 .

[77]  D. Pecile,et al.  Comparison and efficiency of materials for summation of photons assisted by energy transfer , 1973 .

[78]  N. Menyuk,et al.  NaYF4 : Yb,Er—an efficient upconversion phosphor , 1972 .

[79]  G. Dieke,et al.  The Spectra of the Doubly and Triply Ionized Rare Earths , 1963 .

[80]  G. C. Nieman,et al.  Triplet—Triplet Annihilation and Delayed Fluorescence in Molecular Aggregates , 1963 .

[81]  C. Peters,et al.  Generation of optical harmonics , 1961 .

[82]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[83]  Michael Kasha,et al.  Characterization of electronic transitions in complex molecules , 1950 .