Derivation and Use of Cell Lines from Mouse Models of Melanoma.

[1]  Y. Chung,et al.  Single-cell RNA sequencing reveals the existence of pro-metastatic subpopulation within a parental B16 murine melanoma cell line. , 2022, Biochemical and biophysical research communications.

[2]  C. Ceol,et al.  Research Techniques Made Simple: Zebrafish Models for Human Dermatologic Disease. , 2022, The Journal of investigative dermatology.

[3]  P. Ascierto,et al.  Evolving impact of long-term survival results on metastatic melanoma treatment , 2020, Journal for ImmunoTherapy of Cancer.

[4]  G. Cappellano,et al.  A TLR7 agonist strengthens T and NK cell function during BRAF‐targeted therapy in a preclinical melanoma model , 2019, International journal of cancer.

[5]  A. Aplin,et al.  C57BL/6 congenic mouse NRASQ61K melanoma cell lines are highly sensitive to the combination of Mek and Akt inhibitors in vitro and in vivo , 2019, Pigment cell & melanoma research.

[6]  E. Ruppin,et al.  Translational Reprogramming Marks Adaptation to Asparagine Restriction in Cancer , 2019, Nature Cell Biology.

[7]  Z. Aktary,et al.  BRN2 is a non-canonical melanoma tumor-suppressor , 2019, Nature Communications.

[8]  A. Kulkarni,et al.  Dual Inhibitors-Loaded Nanotherapeutics that Target Kinase Signaling Pathways Synergize with Immune Checkpoint Inhibitor , 2019, Cellular and Molecular Bioengineering.

[9]  K. Flaherty,et al.  Targeted agents and immunotherapies: optimizing outcomes in melanoma , 2017, Nature Reviews Clinical Oncology.

[10]  M. Bosenberg,et al.  The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations , 2016, Pigment cell & melanoma research.

[11]  J. Fisher,et al.  Multiple murine BRafV600E melanoma cell lines with sensitivity to PLX4032 , 2014, Pigment cell & melanoma research.

[12]  Hubing Shi,et al.  MDM4 is a key therapeutic target in cutaneous melanoma , 2012, Nature Medicine.

[13]  R. Marais,et al.  [Murine cutaneous melanoma models. Importance of the genetic background]. , 2011, Annales de Pathologie.

[14]  P. Pollock,et al.  p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation , 2010, Pigment cell & melanoma research.

[15]  J. Reis-Filho,et al.  Oncogenic Braf induces melanocyte senescence and melanoma in mice. , 2009, Cancer cell.

[16]  R. DePinho,et al.  BRafV600E cooperates with Pten silencing to elicit metastatic melanoma , 2009, Nature Genetics.

[17]  F. Luciani,et al.  Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. , 2007, Genes & development.

[18]  M. Barbacid,et al.  Spontaneous and UV radiation-induced multiple metastatic melanomas in Cdk4R24C/R24C/TPras mice. , 2006, Cancer research.

[19]  A. Trumpp,et al.  Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. , 2005, Cancer research.

[20]  G. Merlino,et al.  Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK, ATF-2 and cyclin D1 , 2002, Oncogene.

[21]  D. Kusewitt,et al.  Animal models of melanoma. , 1996, Cancer surveys.

[22]  A. Balmain,et al.  Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 HA‐ras gene regulated by a mouse tyrosinase promoter , 1995, Molecular carcinogenesis.

[23]  L. Larue,et al.  Genetic predisposition of transgenic mouse melanocytes to melanoma results in malignant melanoma after exposure to a low ultraviolet B intensity nontumorigenic for normal melanocytes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[24]  L. Larue,et al.  Clonal coat color variation due to a transforming gene expressed in melanocytes of transgenic mice. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Bennett,et al.  A line of non‐tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth , 1987, International journal of cancer.

[26]  I. Fidler,et al.  In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. , 1980, Cancer research.

[27]  A. M. Cloudman THE EFFECT OF AN EXTRA-CHROMO-SOMAL INFLUENCE UPON TRANSPLANTED SPONTANEOUS TUMORS IN MICE. , 1941, Science.

[28]  C. Warneke,et al.  Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. , 2006, The Journal of investigative dermatology.

[29]  R. Passey,et al.  A transplantable melanoma of the mouse , 2022 .