Virtual $\chi_{-y}$-genera of Quot schemes on surfaces
暂无分享,去创建一个
[1] R. Pandharipande,et al. Rationality of descendent series for Hilbert and Quot schemes of surfaces , 2020, Selecta Mathematica.
[2] R. Pandharipande,et al. Quot schemes of curves and surfaces: virtual classes, integrals, Euler characteristics , 2019, Geometry & Topology.
[3] T. Laarakker. Monopole contributions to refined Vafa–Witten invariants , 2018, Geometry & Topology.
[4] Richard P. Thomas. Equivariant K-Theory and Refined Vafa–Witten Invariants , 2018, Communications in Mathematical Physics.
[5] Richard P. Thomas,et al. Degeneracy loci, virtual cycles and nested Hilbert schemes, I , 2017, Tunisian Journal of Mathematics.
[6] L. Göttsche,et al. Virtual Refinements of the Vafa–Witten Formula , 2017, Communications in Mathematical Physics.
[7] S. Yau,et al. Nested Hilbert schemes on surfaces: Virtual fundamental class , 2017, Advances in Mathematics.
[8] Richard P. Thomas,et al. Vafa-Witten invariants for projective surfaces I: stable case , 2017, Journal of Algebraic Geometry.
[9] Richard P. Thomas,et al. Vafa-Witten invariants for projective surfaces II: semistable case. , 2017, 1702.08488.
[10] R. Pandharipande,et al. Segre classes and Hilbert schemes of points , 2015, 1507.00688.
[11] Richard P. Thomas,et al. Reduced classes and curve counting on surfaces II: calculations , 2011, 1112.3070.
[12] L. Gottsche,et al. The chi-y genera of relative Hilbert schemes for linear systems on Abelian and K3 surfaces , 2013, 1307.4316.
[13] Seiberg – Witten. Poincaré invariants are Seiberg – Witten invariants , 2013 .
[14] Benjamin Bakker,et al. Higher rank stable pairs on K3 surfaces , 2011, 1103.3727.
[15] Richard P. Thomas,et al. A short proof of the Göttsche conjecture , 2010, 1010.3211.
[16] Y. Kiem,et al. Localizing virtual cycles by cosections , 2010, 1007.3085.
[17] K. Yoshioka,et al. Donaldson = Seiberg-Witten from Mochizuki's formula and instanton counting , 2010, 1001.5024.
[18] B. Fantechi,et al. Riemann-Roch theorems and elliptic genus for virtually smooth schemes , 2007, 0706.0988.
[19] T. Mochizuki. Donaldson type invariants for algebraic surfaces: transition of moduli stacks / Takuro Mochizuki , 2009 .
[20] 望月 拓郎. Donaldson type invariants for algebraic surfaces : transition of moduli stacks , 2009 .
[21] M. Kapranov,et al. Virtual fundamental classes via dg-manifolds , 2007, math/0703214.
[22] C. Okonek,et al. Poincar´ e invariants , 2007 .
[23] A. Marian,et al. Virtual intersections on the Quot-scheme and Vafa-Intriligator formulas , 2005, math/0505685.
[24] Bernd S Siebert. Virtual fundamental classes, global normal cones and Fulton’s canonical classes , 2005, math/0509076.
[25] K. Yoshioka,et al. String partition functions and infinite products , 2000, hep-th/0002169.
[26] G. Ellingsrud,et al. On the Cobordism Class of the Hilbert Scheme of a Surface , 1999, math/9904095.
[27] C. Taubes. ${\rm Gr}Łongrightarrow{\rm SW}$: from pseudo-holomorphic curves to Seiberg-Witten solutions , 1999 .
[28] Wei-Ping Li,et al. On blowup formulae for the S-duality conjecture of Vafa and Witten , 1998, math/9805054.
[29] R. Pandharipande,et al. Localization of virtual classes , 1997, alg-geom/9708001.
[30] B. Fantechi,et al. The intrinsic normal cone , 1996, alg-geom/9601010.
[31] G. Tian,et al. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties , 1996, alg-geom/9602007.
[32] C. Taubes. SW ⇒ Gr: From the Seiberg-Witten equations to pseudo-holomorphic curves , 1996 .
[33] E. Witten,et al. A Strong coupling test of S duality , 1994, hep-th/9408074.
[34] J. Fogarty. ALGEBRAIC FAMILIES ON AN ALGEBRAIC SURFACE. , 1968 .