Virtual $\chi_{-y}$-genera of Quot schemes on surfaces

This paper studies the virtual $\chi_{-y}$-genera of Grothendieck's Quot schemes on surfaces, thus refining the calculations of the virtual Euler characteristics in [OP]. We first prove a structural result expressing the equivariant $\chi_{-y}$-genera of Quot schemes universally in terms of the Seiberg-Witten invariants of [DKO]. The formula is simpler for curve classes of Seiberg-Witten length $N$, which are defined in the paper. By way of application, we give complete answers in the following cases: arbitrary surfaces with the zero curve class, relatively minimal elliptic surfaces with curve classes supported on fibers, and minimal surfaces of general type with $p_g>0$ with multiples of the canonical class. Furthermore, a blow up formula is obtained for curve classes of Seiberg-Witten length $N$. As a result of these calculations, the generating series of the virtual $\chi_{-y}$-genera are shown to be given by rational functions, for all surfaces with $p_g>0$, addressing a conjecture of [OP]. In addition, we study the reduced $\chi_{-y}$-genera for $K3$ surfaces and primitive curve classes with connections to the Kawai-Yoshioka formula.

[1]  R. Pandharipande,et al.  Rationality of descendent series for Hilbert and Quot schemes of surfaces , 2020, Selecta Mathematica.

[2]  R. Pandharipande,et al.  Quot schemes of curves and surfaces: virtual classes, integrals, Euler characteristics , 2019, Geometry & Topology.

[3]  T. Laarakker Monopole contributions to refined Vafa–Witten invariants , 2018, Geometry & Topology.

[4]  Richard P. Thomas Equivariant K-Theory and Refined Vafa–Witten Invariants , 2018, Communications in Mathematical Physics.

[5]  Richard P. Thomas,et al.  Degeneracy loci, virtual cycles and nested Hilbert schemes, I , 2017, Tunisian Journal of Mathematics.

[6]  L. Göttsche,et al.  Virtual Refinements of the Vafa–Witten Formula , 2017, Communications in Mathematical Physics.

[7]  S. Yau,et al.  Nested Hilbert schemes on surfaces: Virtual fundamental class , 2017, Advances in Mathematics.

[8]  Richard P. Thomas,et al.  Vafa-Witten invariants for projective surfaces I: stable case , 2017, Journal of Algebraic Geometry.

[9]  Richard P. Thomas,et al.  Vafa-Witten invariants for projective surfaces II: semistable case. , 2017, 1702.08488.

[10]  R. Pandharipande,et al.  Segre classes and Hilbert schemes of points , 2015, 1507.00688.

[11]  Richard P. Thomas,et al.  Reduced classes and curve counting on surfaces II: calculations , 2011, 1112.3070.

[12]  L. Gottsche,et al.  The chi-y genera of relative Hilbert schemes for linear systems on Abelian and K3 surfaces , 2013, 1307.4316.

[13]  Seiberg – Witten Poincaré invariants are Seiberg – Witten invariants , 2013 .

[14]  Benjamin Bakker,et al.  Higher rank stable pairs on K3 surfaces , 2011, 1103.3727.

[15]  Richard P. Thomas,et al.  A short proof of the Göttsche conjecture , 2010, 1010.3211.

[16]  Y. Kiem,et al.  Localizing virtual cycles by cosections , 2010, 1007.3085.

[17]  K. Yoshioka,et al.  Donaldson = Seiberg-Witten from Mochizuki's formula and instanton counting , 2010, 1001.5024.

[18]  B. Fantechi,et al.  Riemann-Roch theorems and elliptic genus for virtually smooth schemes , 2007, 0706.0988.

[19]  T. Mochizuki Donaldson type invariants for algebraic surfaces: transition of moduli stacks / Takuro Mochizuki , 2009 .

[20]  望月 拓郎 Donaldson type invariants for algebraic surfaces : transition of moduli stacks , 2009 .

[21]  M. Kapranov,et al.  Virtual fundamental classes via dg-manifolds , 2007, math/0703214.

[22]  C. Okonek,et al.  Poincar´ e invariants , 2007 .

[23]  A. Marian,et al.  Virtual intersections on the Quot-scheme and Vafa-Intriligator formulas , 2005, math/0505685.

[24]  Bernd S Siebert Virtual fundamental classes, global normal cones and Fulton’s canonical classes , 2005, math/0509076.

[25]  K. Yoshioka,et al.  String partition functions and infinite products , 2000, hep-th/0002169.

[26]  G. Ellingsrud,et al.  On the Cobordism Class of the Hilbert Scheme of a Surface , 1999, math/9904095.

[27]  C. Taubes ${\rm Gr}Łongrightarrow{\rm SW}$: from pseudo-holomorphic curves to Seiberg-Witten solutions , 1999 .

[28]  Wei-Ping Li,et al.  On blowup formulae for the S-duality conjecture of Vafa and Witten , 1998, math/9805054.

[29]  R. Pandharipande,et al.  Localization of virtual classes , 1997, alg-geom/9708001.

[30]  B. Fantechi,et al.  The intrinsic normal cone , 1996, alg-geom/9601010.

[31]  G. Tian,et al.  Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties , 1996, alg-geom/9602007.

[32]  C. Taubes SW ⇒ Gr: From the Seiberg-Witten equations to pseudo-holomorphic curves , 1996 .

[33]  E. Witten,et al.  A Strong coupling test of S duality , 1994, hep-th/9408074.

[34]  J. Fogarty ALGEBRAIC FAMILIES ON AN ALGEBRAIC SURFACE. , 1968 .