Bifunctional chelates for metal nuclides.

The use of ''non-standard'' metallic radionuclides continues to be an expanding field of investigation. Radiolabeling small molecules, peptides, proteins, and up to nano-particles are all areas of active investigation for both diagnostic and therapeutic applications. All require a common variableaethe need for appropriate chelation chemistry for adequate sequestration of the metallic radionuclide that is equal to the intended application. A brief overview of the array of the chelation chemistry options available to researchers and the means for their selection is provided.

[1]  M. Port,et al.  Complexing mechanism of the lanthanide cations Eu3+, Gd3+, and Tb3+ with 1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (dota)-characterization of three successive complexing phases: study of the thermodynamic and structural properties of the complexes by potentiometry, luminescence , 2004, Chemistry.

[2]  M. Brechbiel,et al.  Antibody-targeted radiation cancer therapy , 2004, Nature Reviews Drug Discovery.

[3]  Pauline Chu,et al.  A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. , 2004, International journal of radiation oncology, biology, physics.

[4]  R. Boellaard,et al.  89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[5]  C. White,et al.  Antibody therapy of non-Hodgkin's B-cell lymphoma , 2003, Cancer Immunology, Immunotherapy.

[6]  L. Chappell,et al.  In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. , 2002, Nuclear medicine and biology.

[7]  D. Scheinberg,et al.  Tumor Therapy with Targeted Atomic Nanogenerators , 2001, Science.

[8]  I. Pastan,et al.  Synthesis and evaluation of a macrocyclic bifunctional chelating agent for use with bismuth radionuclides. , 2001, Nuclear medicine and biology.

[9]  J. Shively,et al.  An improved method for conjugating monoclonal antibodies with N-hydroxysulfosuccinimidyl DOTA. , 2001, Bioconjugate chemistry.

[10]  H. Mäcke,et al.  A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. , 2000, Bioorganic & medicinal chemistry letters.

[11]  L. Chappell,et al.  Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. , 2000, Nuclear medicine and biology.

[12]  F. Rösch,et al.  Determination of Stability Constants in Y-DTPA-Peptide-Systems : Evaluation of a Radiochemical Method Using n.c.a. Yttrium-88 , 1999 .

[13]  P. Anelli,et al.  L-Glutamic acid and L-lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands. , 1999, Bioconjugate chemistry.

[14]  H. Maecke,et al.  1,4,7-Triazacyclononane-1-succinic acid-4,7-diacetic acid (NODASA): a new bifunctional chelator for radio gallium-labelling of biomolecules , 1998 .

[15]  I. Pastan,et al.  Stereochemical influence on the stability of radio-metal complexes in vivo. Synthesis and evaluation of the four stereoisomers of 2-(p-nitrobenzyl)-trans-CyDTPA. , 1997, Bioorganic & medicinal chemistry.

[16]  J. Cai,et al.  A new synthetic method of all carboxylate-free DTPA derivatives and its application to the synthesis of Gd-carborane complex , 1996 .

[17]  M. Brechbiel,et al.  A direct synthesis of a bifunctional chelating agent for radiolabeling proteins , 1993 .

[18]  H. Haisma,et al.  Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. , 1992, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.

[19]  C. Meares,et al.  Synthesis of novel 1,4,7-triazacyclononane-N,N',N"-triacetic acid derivatives suitable for protein labeling. , 1992, Bioconjugate chemistry.

[20]  S. Kline,et al.  Carboxymethyl‐Substituted Bifunctional Chelators: Preparation of Aryl Isothiocyanate Derivatives of 3‐(Carboxymethyl)‐3‐azapentanedioic Acid, 3,12‐Bis(carboxymethyl)‐6,9‐dioxa‐3,12‐diazatetradecanedioic Acid, and 1,4,7,10‐Tetraazacyclododecane‐N,N′,N′′,N′′′‐tetraacetic Acid for Use as Protein Labels , 1992 .

[21]  M. Brechbiel,et al.  Convenient synthesis of bifunctional tetraaza macrocycles. , 1992, Bioconjugate chemistry.

[22]  C. Meares,et al.  Simplified method for conjugating macrocyclic bifunctional chelating agents to antibodies via 2-iminothiolane. , 1990, Bioconjugate chemistry.

[23]  D. Parker Tumour targeting with radiolabelled macrocycle–antibody conjugates , 1990 .

[24]  D. Johnson,et al.  Dual isotope study of iodine-125 and indium-111-labeled antibody in athymic mice. , 1989, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  S. Denardo,et al.  The peptide way to macrocyclic bifunctional chelating agents: synthesis of 2-(p-nitrobenzyl)-1,4,7,10-tetraazacyclododecane-N,N',N",N'''-tetraacetic acid and study of its yttrium(III) complex. , 1988, Journal of the American Chemical Society.

[26]  S. Denardo,et al.  X-ray crystal structure of a macrocyclic copper chelate stable enough for use in living systems: Copper(II) dihydrogen 6-(p-nitrobenzyl)-1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetate , 1987 .

[27]  D. E. Simpson,et al.  Synthesis of 1-(p-Isothiocyanatobenzyl) Derivatives of DTPA and EDTA. , 1986 .

[28]  D. E. Simpson,et al.  Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies , 1986 .

[29]  T. Wensel,et al.  Metal chelates as probes of biological systems , 1984 .

[30]  R. L. Childs,et al.  Radioactive labeling of antibody: a simple and efficient method. , 1983, Science.

[31]  G. Krejcarek,et al.  Covalent attachment of chelating groups to macromolecules. , 1977, Biochemical and biophysical research communications.

[32]  W. Blahd,et al.  Indium-III-Labeled Antibody Heavy Metal Chelate Conjugates: A Potential Alternative to Radioiodination 1 , 1976, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[33]  H. Hart,et al.  Excretion of Yttrium and Lanthanum Chelates of Cyclohexane 1,2-Trans Diamine Tetraacetic Acid and Diethylenetriamine Pentaacetic Acid in Man , 1957, Nature.