Coding theorems of quantum information theory
暂无分享,去创建一个
[1] C. Bendjaballah,et al. Rate Distortion and Detection in Quantum Communication , 1998, IEEE Trans. Inf. Theory.
[2] L. Ballentine,et al. Quantum Theory: Concepts and Methods , 1994 .
[3] M. Nielsen,et al. Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.
[4] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[5] A. Wehrl. General properties of entropy , 1978 .
[6] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[7] H. Nagaoka,et al. Algorithms of Arimoto-Blahut type for computing quantum channel capacity , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[8] H. Umegaki. Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .
[9] Asher Peres,et al. Quantum Theory: Concepts and Methods , 1994 .
[10] Rudolf Ahlswede,et al. Multi-way communication channels , 1973 .
[11] W. Wootters,et al. A single quantum cannot be cloned , 1982, Nature.
[12] Alexander Semenovich Holevo,et al. Quantum coding theorems , 1998 .
[13] Alexander S. Holevo,et al. The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.
[14] Samuel L. Braunstein,et al. A quantum analog of huffman coding , 2000, IEEE Trans. Inf. Theory.
[15] W. Arveson. An Invitation To C*-Algebras , 1976 .
[16] G. Ludwig. Die Grundlagen der Quantenmechanik , 1954 .
[17] A. Holevo. Problems in the mathematical theory of quantum communication channels , 1977 .
[18] M. Horodecki,et al. Universal Quantum Information Compression , 1998, quant-ph/9805017.
[19] E. B. Davies. Quantum theory of open systems , 1976 .
[20] Michael J. W. Hall,et al. QUANTUM INFORMATION AND CORRELATION BOUNDS , 1997 .
[21] Schumacher,et al. Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[22] G. Lindblad. Completely positive maps and entropy inequalities , 1975 .
[23] Andreas J. Winter,et al. Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.
[24] J. Neumann. Thermodynamik quantenmechanischer Gesamtheiten , 1927 .
[25] W. Stinespring. Positive functions on *-algebras , 1955 .
[26] M. Horodecki. Limits for compression of quantum information carried by ensembles of mixed states , 1997, quant-ph/9712035.
[27] Schumacher,et al. Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[28] D. Petz,et al. Quantum Entropy and Its Use , 1993 .
[29] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[30] A. S. Holevo,et al. Capacity of a quantum communication channel , 1979 .
[31] Howard Barnum. Quantum rate-distortion coding , 1998 .
[32] A. Uhlmann. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .
[33] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[34] A. Shimony,et al. Bell’s theorem without inequalities , 1990 .
[35] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[36] Michael D. Westmoreland,et al. Sending classical information via noisy quantum channels , 1997 .
[37] R. Ahlswede. The Capacity Region of a Channel with Two Senders and Two Receivers , 1974 .
[38] Jozsa,et al. General fidelity limit for quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[39] Lev B. Levitin. Conditional entropy and information in quantum systems , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[40] A. El Gamal,et al. Multiple user information theory , 1980, Proceedings of the IEEE.
[41] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[42] Benjamin Schumacher,et al. A new proof of the quantum noiseless coding theorem , 1994 .
[43] Jacob Wolfowitz. Coding Theorems of Information Theory , 1962 .
[44] Claude E. Shannon,et al. Two-way Communication Channels , 1961 .
[45] A. E. Allahverdyan,et al. Multi-access channels in quantum information theory , 1997 .
[46] Rudolf Ahlswede,et al. Coloring hypergraphs: A new approach to multi-user source coding, 1 , 1979 .
[47] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[48] Tomohiro Ogawa,et al. Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.
[49] Andreas J. Winter. The capacity of the quantum multiple-access channel , 2001, IEEE Trans. Inf. Theory.
[50] Schumacher,et al. Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.