Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure

The projector augmented wave method (PAW), introduced for the first time by Blochl [P. Blochl, Phys. Rev. B 50 (1994) 17953], has been implemented in the ABINIT code [X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstaete, G. Zerah, F. Jollet, et al., Comput. Mater. Sci. 25 (2002) 478]. This implementation allows self-consistent calculations of the electronic structure of a periodic solid within the density functional theory (DFT), including the analytic calculation of forces and stresses. Geometry optimization and molecular dynamics are also available. We present here I he details of the implementation, including the analytic formula for forces and stresses. Results concerning the study of iron under pressure are presented to validate the implementation. (C) 2007 Elsevier B.V. All rights reserved.

[1]  G. E. Matthews,et al.  Comparison of the Projector Augmented-Wave, Pseudopotential, and Linearized Augmented- Plane-Wave Formalisms for Density-Functional Calculations of Solids , 1997 .

[2]  Lee,et al.  Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. , 1993, Physical review. B, Condensed matter.

[3]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[4]  M. Torrent,et al.  Quasihydrostatic equation of state of iron above 2 Mbar. , 2006, Physical review letters.

[5]  Cohen,et al.  Iron at high pressure: Linearized-augmented-plane-wave computations in the generalized-gradient approximation. , 1994, Physical review. B, Condensed matter.

[6]  Stefan Goedecker,et al.  An efficient 3-dim FFT for plane wave electronic structure calculations on massively parallel machines composed of multiprocessor nodes , 2003 .

[7]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[8]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[9]  B. Johansson,et al.  Stability of the body-centered-tetragonal phase of fe at high pressure : Ground-state energies, phonon spectra, and molecular dynamics simulations , 2006 .

[10]  G. E. Matthews,et al.  A Projector Augmented Wave (PAW) code for electronic structure calculations, Part II: Pwpaw for periodic solids in a plane wave basis , 2001 .

[11]  H. Mao,et al.  Static compression of iron to 300 GPa and Fe(0.8)Ni(0.2) alloy to 260 GPa - Implications for composition of the core , 1990 .

[12]  Xavier Gonze,et al.  Projector augmented-wave approach to density-functional perturbation theory , 2006 .

[13]  G. E. Matthews,et al.  A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions , 2001 .

[14]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[15]  Alessandro Curioni,et al.  Dual-level parallelism for ab initio molecular dynamics: Reaching teraflop performance with the CPMD code , 2005, Parallel Comput..

[16]  A. Cracknell,et al.  The mathematical theory of symmetry in solids;: Representation theory for point groups and space groups, , 1972 .

[17]  Peter M. Bell,et al.  Static compression of iron to 78 GPa with rare gas solids as pressure-transmitting media , 1986 .

[18]  M. A. Blanco,et al.  Evaluation of the rotation matrices in the basis of real spherical harmonics , 1997 .

[19]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[20]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[21]  Martin,et al.  Quantum-mechanical theory of stress and force. , 1985, Physical review. B, Condensed matter.

[22]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[23]  G. Steinle-Neumann,et al.  First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure (vol 60, pg 791, 1999) , 1999 .

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.