Modeling Interest-Driven Data Dissemination in Online Social Networks

In this paper, we aim to model the formation of interest-driven data dissemination in online social networks (OSNs). We focus on a usual type of interest-driven social sessions in OSNs, called Social-InterestCast, under which a user will autonomously determine whether to view the content from his followees depending on his interest. To figure out the formation mechanism of such a Social-InterestCast, we propose a four-layered system model, consisting of physical layer, social layer, content layer, and session layer to model this interestdriven sessions. To the best of our knowledge, this is the first work to model data dissemination in OSNs with the interestdriven characteristics.

[1]  Hamid R. Sadjadpour,et al.  Capacity of scale free wireless networks , 2012, 2012 IEEE Global Communications Conference (GLOBECOM).

[2]  Changsheng Xu,et al.  Mining Cross-network Association for YouTube Video Promotion , 2014, ACM Multimedia.

[3]  Jinwoo Shin,et al.  On the impact of global information on diffusion of innovations over social networks , 2013, INFOCOM Workshops.

[4]  Nick Koudas,et al.  TwitterMonitor: trend detection over the twitter stream , 2010, SIGMOD Conference.

[5]  Yang Guo,et al.  Bayesian-Inference-Based Recommendation in Online Social Networks , 2011, IEEE Transactions on Parallel and Distributed Systems.

[6]  Mohamed F. Mokbel,et al.  Location-based and preference-aware recommendation using sparse geo-social networking data , 2012, SIGSPATIAL/GIS.

[7]  Inderjit S. Dhillon,et al.  Enhanced word clustering for hierarchical text classification , 2002, KDD.

[8]  Niklas Carlsson,et al.  The untold story of the clones: content-agnostic factors that impact YouTube video popularity , 2012, KDD.

[9]  Jure Leskovec,et al.  Information diffusion and external influence in networks , 2012, KDD.

[10]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[11]  Lixin Gao,et al.  The impact of YouTube recommendation system on video views , 2010, IMC '10.

[12]  Lada A. Adamic,et al.  The role of social networks in information diffusion , 2012, WWW.

[13]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[14]  Michael R. Lyu,et al.  Fused Matrix Factorization with Geographical and Social Influence in Location-Based Social Networks , 2012, AAAI.

[15]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[16]  Haitao Li,et al.  Understanding Video Sharing Propagation in Social Networks: Measurement and Analysis , 2014, TOMM.

[17]  Michele Garetto,et al.  Capacity scaling of wireless networks with inhomogeneous node density: upper bounds , 2009, IEEE Journal on Selected Areas in Communications.

[18]  Eitan Altman A Stochastic Game Approach for Competition over Popularity in Social Networks , 2013, Dyn. Games Appl..

[19]  R. Merton The Matthew Effect in Science , 1968, Science.

[20]  Shaojie Tang,et al.  Modeling data dissemination in online social networks: a geographical perspective on bounding network traffic load , 2014, MobiHoc '14.

[21]  Thrasyvoulos Spyropoulos,et al.  Putting contacts into context: mobility modeling beyond inter-contact times , 2011, MobiHoc '11.

[22]  Shaojie Tang,et al.  Scaling laws on multicast capacity of large scale wireless networks , 2009, IEEE INFOCOM 2009.