Image registration using BP-SIFT

Scale Invariant Feature Transform (SIFT) is a powerful technique for image registration. Although SIFT descriptors accurately extract invariant image characteristics around keypoints, the commonly used matching approaches of registration loosely represent the geometric information among descriptors. In this paper, we propose an image registration algorithm named BP-SIFT, where we formulate keypoint matching of SIFT descriptors as a global optimization problem and provide a suboptimum solution using belief propagation (BP). Experimental results show significant improvement over conventional SIFT-based matching with reasonable computation complexity.

[1]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[2]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[3]  Horst Bischof,et al.  Fast Approximated SIFT , 2006, ACCV.

[4]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[5]  Yan Dong,et al.  Automatic Registration Based on Improved SIFT for Medical Microscopic Sequence Images , 2008, 2008 Second International Symposium on Intelligent Information Technology Application.

[6]  Ivan Laptev,et al.  Local Descriptors for Spatio-temporal Recognition , 2004, SCVMA.

[7]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[8]  Long Quan,et al.  Robust dense matching using local and global geometric constraints , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[9]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[10]  Martin J. Wainwright,et al.  Tree-reweighted belief propagation algorithms and approximate ML estimation by pseudo-moment matching , 2003, AISTATS.

[11]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  M.S. Nixon,et al.  Robust 2D Ear Registration and Recognition Based on SIFT Point Matching , 2008, 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems.

[14]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Different Scenes , 2008, ECCV.

[15]  Jitendra Malik,et al.  Large displacement optical flow , 2009, CVPR.

[16]  Jianbo Su,et al.  Feature matching based on geometric constraints in stereo views of curved scenes , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Michael I. Jordan Graphical Models , 2003 .

[18]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[19]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[20]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[21]  Pedro F. Felzenszwalb,et al.  Efficient belief propagation for early vision , 2004, CVPR 2004.

[22]  Cordelia Schmid,et al.  3D Object Modeling and Recognition Using Local Affine-Invariant Image Descriptors and Multi-View Spatial Constraints , 2006, International Journal of Computer Vision.

[23]  L. Goddard Information Theory , 1962, Nature.

[24]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[25]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[26]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[28]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[29]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[30]  Farhad Kamangar,et al.  Geometric feature-based matching in stereo images , 1999, 1999 Information, Decision and Control. Data and Information Fusion Symposium, Signal Processing and Communications Symposium and Decision and Control Symposium. Proceedings (Cat. No.99EX251).

[31]  V Elser,et al.  Searching with iterated maps , 2007, Proceedings of the National Academy of Sciences.

[32]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[33]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[34]  Cordelia Schmid,et al.  Toward Category-Level Object Recognition (Lecture Notes in Computer Science) , 2007 .

[35]  J J Hopfield,et al.  What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[37]  A. Vedaldi An open implementation of the SIFT detector and descriptor , 2007 .

[38]  Cordelia Schmid,et al.  Toward Category-Level Object Recognition , 2006, Toward Category-Level Object Recognition.