Optimum design of fatigue-resistant composite laminates using hybrid algorithm

Abstract In this study, a fatigue life prediction model termed as Failure Tensor Polynomial in Fatigue (FTPF) is applied to the optimum stacking sequence design of laminated composites under various in-plane cyclic loadings to obtain maximum fatigue life. The validity of the model is investigated with an experimental correlation using the data available in the literature. The correlation study indicates the reliability of FTPF, and its applicability to different composite materials and multidirectional laminates. In the optimization, a hybrid algorithm combining genetic algorithm and generalized pattern search algorithm is used. It is found by test problems that the hybrid algorithm shows superior performance in finding global optima compared to the so far best results in the literature. After the verifications, a number of problems including different design cases are solved, and the optimum designs constituted of discrete fiber angles which give the maximum possible fatigue lives are proposed to discuss. A comparison study is also performed with selected design cases to demonstrate potential advantages of using non-conventional fiber angles in design.

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  Sankaran Mahadevan,et al.  Probabilistic fatigue life prediction of multidirectional composite laminates , 2005 .

[3]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[4]  Fernand Ellyin,et al.  Fatigue Failure Model for Fibre-Reinforced Materials under General Loading Conditions , 1994 .

[5]  Adrião Duarte Dória Neto,et al.  BUILDING OF CONSTANT LIFE DIAGRAMS OF FATIGUE USING ARTIFICIAL NEURAL NETWORKS , 2005 .

[6]  Masamichi Kawai,et al.  A phenomenological model for off-axis fatigue behavior of unidirectional polymer matrix composites under different stress ratios , 2004 .

[7]  Ramesh Talreja,et al.  Fatigue behaviour and life assessment of composite laminates under multiaxial loadings , 2010 .

[8]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[9]  A. P. Vassilopoulos,et al.  Fatigue Strength Prediction under Multiaxial Stress , 1999 .

[10]  A. Muc,et al.  Discrete optimization of composite structures under fatigue constraints , 2015 .

[11]  C.-H. Lee,et al.  Strength and life in thermoplastic composite laminates under static and fatigue loads. Part I: Experimental , 1998 .

[12]  A. Rama Mohan Rao,et al.  Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing , 2007 .

[13]  Anastasios P. Vassilopoulos,et al.  Complex stress state effect on fatigue life of GRP laminates. Part II, Theoretical formulation , 2002 .

[14]  Yousef Al-Assaf,et al.  Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks , 2001 .

[15]  S. Rouhi,et al.  Fatigue life Modeling and Prediction of GRP Composites Using Multi-objective Evolutionary Optimized Neural Networks , 2012 .

[16]  Youping Wu,et al.  Prediction of the fatigue life of natural rubber composites by artificial neural network approaches , 2014 .

[17]  Anastasios P. Vassilopoulos,et al.  Fatigue of Fiber-reinforced Composites , 2011 .

[18]  A. Rotem,et al.  Fatigue Failure of Multidirectional Laminate , 1979 .

[19]  Efstratios F. Georgopoulos,et al.  Comparison of genetic programming with conventional methods for fatigue life modeling of FRP composite materials , 2008 .

[20]  Efstratios F. Georgopoulos,et al.  Artificial neural networks in spectrum fatigue life prediction of composite materials , 2007 .

[21]  Z. Hashin Failure Criteria for Unidirectional Fiber Composites , 1980 .

[22]  A. Rama Mohan Rao,et al.  A scatter search algorithm for stacking sequence optimisation of laminate composites , 2005 .

[23]  Giuseppe Nicosia,et al.  Generalized pattern search algorithm for Peptide structure prediction. , 2008, Biophysical journal.

[24]  A. Rotem,et al.  Residual Strength of Composite Laminates Subjected to Tensile-Compressive Fatigue Loading , 1990 .

[25]  A. Rama Mohan Rao,et al.  Optimal design of stiffened laminate composite cylinder using a hybrid SFL algorithm , 2012 .

[26]  Robert V. Brill,et al.  Applied Statistics and Probability for Engineers , 2004, Technometrics.

[27]  Manoj Kumar Tiwari,et al.  An efficient hybrid evolutionary heuristic using genetic algorithm and simulated annealing algorithm to solve machine loading problem in FMS , 2009 .

[28]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[29]  Layne T. Watson,et al.  COMPOSITE LAMINATE DESIGN OPTIMIZATION BY GENETIC ALGORITHM WITH GENERALIZED ELITIST SELECTION , 2001 .

[30]  S. Adali,et al.  Optimization of Fibre Reinforced Composite Laminates Subject to Fatigue Loading , 1985 .

[31]  Anastasios P. Vassilopoulos,et al.  Complex stress state effect on fatigue life of GRP laminates. Part I, experimental , 2002 .

[32]  F. Sonmez,et al.  Design optimization of fiber-reinforced laminates for maximum fatigue life , 2014 .

[33]  R. Haftka,et al.  Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm , 1993 .

[34]  Z. Hashin,et al.  A Fatigue Failure Criterion for Fiber Reinforced Materials , 1973 .

[36]  Weixing Yao,et al.  Fatigue life prediction of composite laminates by FEA simulation method , 2010 .

[37]  Fatigue life prediction of carbon/epoxy laminates by stochastic numerical simulation , 2012 .

[38]  Levent Aydin,et al.  Buckling optimization of composite laminates using a hybrid algorithm under Puck failure criterion constraint , 2016 .

[39]  Mark Walker,et al.  A method for optimally designing laminated plates subject to fatigue loads for minimum weight using a cumulative damage constraint , 2000 .