A finite element method by patch reconstruction for the Stokes problem using mixed formulations

Abstract In this paper, we develop a patch reconstruction finite element method for the Stokes problem. The weak formulation of the interior penalty discontinuous Galerkin is employed. The proposed method has a great flexibility in velocity–pressure space pairs whose stability properties are confirmed by the inf–sup tests. Numerical examples show the applicability and efficiency of the proposed method.

[1]  Bernardo Cockburn,et al.  Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..

[2]  Andrea Toselli,et al.  HP DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE STOKES PROBLEM , 2002 .

[3]  Bernardo Cockburn,et al.  journal homepage: www.elsevier.com/locate/cma , 2022 .

[4]  D. Malkus Eigenproblems associated with the discrete LBB condition for incompressible finite elements , 1981 .

[5]  Peter Hansbo,et al.  Piecewise divergence‐free discontinuous Galerkin methods for Stokes flow , 2006 .

[6]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[7]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[8]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[9]  Ruo Li,et al.  An Arbitrary-Order Discontinuous Galerkin Method with One Unknown Per Element , 2018, Journal of Scientific Computing.

[10]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[11]  Bernardo Cockburn,et al.  Incompressible Finite Elements via Hybridization. Part I: The Stokes System in Two Space Dimensions , 2005, SIAM J. Numer. Anal..

[12]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[13]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[14]  Bernardo Cockburn,et al.  Incompressible Finite Elements via Hybridization. Part II: The Stokes System in Three Space Dimensions , 2005, SIAM J. Numer. Anal..

[15]  Stefano Giani,et al.  hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, SIAM J. Sci. Comput..

[16]  Spencer J. Sherwin,et al.  On discontinuous Galerkin methods , 2003 .

[17]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[18]  Antonio Huerta,et al.  Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations , 2008 .

[19]  Bernardo Cockburn,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[20]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[21]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[22]  Villardi de Montlaur,et al.  High-order discontinuous Galerkin methods for incompressible flows , 2009 .

[23]  Alexander G Iosilevich,et al.  An inf-sup test for shell finite elements , 2000 .

[24]  Christoph Lehrenfeld,et al.  Hybrid Discontinuous Galerkin Methods with Relaxed H(div)-Conformity for Incompressible Flows. Part I , 2018, SIAM J. Numer. Anal..

[25]  K. Bathe,et al.  The inf-sup test , 1993 .

[26]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[27]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[28]  Ohannes A. Karakashian,et al.  A Nonconforming Finite Element Method for the Stationary Navier--Stokes Equations , 1998 .

[29]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[30]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[31]  Ruo Li,et al.  An Efficient High Order Heterogeneous Multiscale Method for Elliptic Problems , 2012, Multiscale Model. Simul..

[32]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[33]  JIANGGUO LIU Penalty-Factor-Free Discontinuous Galerkin Methods for 2-Dim Stokes Problems , 2011, SIAM J. Numer. Anal..

[34]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[35]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.