A finite element method by patch reconstruction for the Stokes problem using mixed formulations
暂无分享,去创建一个
Ruo Li | Zhijian Yang | Zhiyuan Sun | Fanyi Yang | Ruo Li | Zhijian Yang | Fanyi Yang | Z. Sun
[1] Bernardo Cockburn,et al. Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..
[2] Andrea Toselli,et al. HP DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE STOKES PROBLEM , 2002 .
[3] Bernardo Cockburn,et al. journal homepage: www.elsevier.com/locate/cma , 2022 .
[4] D. Malkus. Eigenproblems associated with the discrete LBB condition for incompressible finite elements , 1981 .
[5] Peter Hansbo,et al. Piecewise divergence‐free discontinuous Galerkin methods for Stokes flow , 2006 .
[6] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[7] Annalisa Buffa,et al. Mimetic finite differences for elliptic problems , 2009 .
[8] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[9] Ruo Li,et al. An Arbitrary-Order Discontinuous Galerkin Method with One Unknown Per Element , 2018, Journal of Scientific Computing.
[10] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[11] Bernardo Cockburn,et al. Incompressible Finite Elements via Hybridization. Part I: The Stokes System in Two Space Dimensions , 2005, SIAM J. Numer. Anal..
[12] P. Hansbo,et al. CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .
[13] P. Hood,et al. A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .
[14] Bernardo Cockburn,et al. Incompressible Finite Elements via Hybridization. Part II: The Stokes System in Three Space Dimensions , 2005, SIAM J. Numer. Anal..
[15] Stefano Giani,et al. hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, SIAM J. Sci. Comput..
[16] Spencer J. Sherwin,et al. On discontinuous Galerkin methods , 2003 .
[17] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[18] Antonio Huerta,et al. Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations , 2008 .
[19] Bernardo Cockburn,et al. Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..
[20] George Em Karniadakis,et al. The Development of Discontinuous Galerkin Methods , 2000 .
[21] Ohannes A. Karakashian,et al. Piecewise solenoidal vector fields and the Stokes problem , 1990 .
[22] Villardi de Montlaur,et al. High-order discontinuous Galerkin methods for incompressible flows , 2009 .
[23] Alexander G Iosilevich,et al. An inf-sup test for shell finite elements , 2000 .
[24] Christoph Lehrenfeld,et al. Hybrid Discontinuous Galerkin Methods with Relaxed H(div)-Conformity for Incompressible Flows. Part I , 2018, SIAM J. Numer. Anal..
[25] K. Bathe,et al. The inf-sup test , 1993 .
[26] Guido Kanschat,et al. A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..
[27] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[28] Ohannes A. Karakashian,et al. A Nonconforming Finite Element Method for the Stationary Navier--Stokes Equations , 1998 .
[29] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[30] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[31] Ruo Li,et al. An Efficient High Order Heterogeneous Multiscale Method for Elliptic Problems , 2012, Multiscale Model. Simul..
[32] Andrea Toselli,et al. Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..
[33] JIANGGUO LIU. Penalty-Factor-Free Discontinuous Galerkin Methods for 2-Dim Stokes Problems , 2011, SIAM J. Numer. Anal..
[34] Gianmarco Manzini,et al. The Mimetic Finite Difference Method for Elliptic Problems , 2014 .
[35] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.