Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer

[1]  Yifan Cheng Single-Particle Cryo-EM at Crystallographic Resolution , 2015, Cell.

[2]  David Baker,et al.  De novo protein structure determination from near-atomic resolution cryo-EM maps , 2015, Nature Methods.

[3]  Matthias J. Brunner,et al.  Atomic accuracy models from 4.5 Å cryo-electron microscopy data with density-guided iterative local refinement , 2015, Nature Methods.

[4]  Alan Brown,et al.  Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions , 2015, Acta crystallographica. Section D, Biological crystallography.

[5]  L. Pelkmans,et al.  Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner , 2014, PLoS pathogens.

[6]  Tongqing Zhou,et al.  Structure and immune recognition of trimeric prefusion HIV-1 Env , 2014, Nature.

[7]  Yan Li,et al.  Bat Origins of MERS-CoV Supported by Bat Coronavirus HKU4 Usage of Human Receptor CD26 , 2014, Cell Host & Microbe.

[8]  S. Scheres Beam-induced motion correction for sub-megadalton cryo-EM particles , 2014, eLife.

[9]  B. Bosch,et al.  Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture , 2014, Journal of Virology.

[10]  Xavier Robert,et al.  Deciphering key features in protein structures with the new ENDscript server , 2014, Nucleic Acids Res..

[11]  M. Frieman,et al.  Coronaviruses: Important Emerging Human Pathogens , 2014, Journal of Virology.

[12]  David Baker,et al.  Proof of principle for epitope-focused vaccine design , 2014, Nature.

[13]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[14]  Dmitry Lyumkis,et al.  Optimod--an automated approach for constructing and optimizing initial models for single-particle electron microscopy. , 2013, Journal of structural biology.

[15]  David Baker,et al.  High-resolution comparative modeling with RosettaCM. , 2013, Structure.

[16]  George F. Gao,et al.  Structure of the Fusion Core and Inhibition of Fusion by a Heptad Repeat Peptide Derived from the S Protein of Middle East Respiratory Syndrome Coronavirus , 2013, Journal of Virology.

[17]  Yi Shi,et al.  Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 , 2013, Nature.

[18]  David Baker,et al.  Cryo‐EM model validation using independent map reconstructions , 2013, Protein science : a publication of the Protein Society.

[19]  U. Baxa,et al.  Structure of RSV Fusion Glycoprotein Trimer Bound to a Prefusion-Specific Neutralizing Antibody , 2013, Science.

[20]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[21]  S. Scheres,et al.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles , 2013, eLife.

[22]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[23]  Fang Li,et al.  Crystal Structure of Bovine Coronavirus Spike Protein Lectin Domain* , 2012, The Journal of Biological Chemistry.

[24]  L. Enjuanes,et al.  Structural Bases of Coronavirus Attachment to Host Aminopeptidase N and Its Inhibition by Neutralizing Antibodies , 2012, PLoS pathogens.

[25]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[26]  Fang Li,et al.  Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor , 2011, Proceedings of the National Academy of Sciences.

[27]  Robert M Glaeser,et al.  Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM. , 2011, Journal of structural biology.

[28]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[29]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[30]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[31]  Fang Li,et al.  Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor , 2009, Proceedings of the National Academy of Sciences.

[32]  Shoshannah L. Roth,et al.  Characterization of a Highly Conserved Domain within the Severe Acute Respiratory Syndrome Coronavirus Spike Protein S2 Domain with Characteristics of a Viral Fusion Peptide , 2009, Journal of Virology.

[33]  M Radermacher,et al.  DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. , 2009, Journal of structural biology.

[34]  Christopher Irving,et al.  Appion: an integrated, database-driven pipeline to facilitate EM image processing. , 2009, Journal of structural biology.

[35]  Shibo Jiang,et al.  The spike protein of SARS-CoV — a target for vaccine and therapeutic development , 2009, Nature Reviews Microbiology.

[36]  E. Huizinga,et al.  Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution , 2008, Proceedings of the National Academy of Sciences.

[37]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[38]  Anton Andonov,et al.  Architecture of the SARS coronavirus prefusion spike , 2006, Nature Structural &Molecular Biology.

[39]  R. Lamb,et al.  Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation , 2006, Nature.

[40]  S. Harrison,et al.  Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor , 2005, Science.

[41]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[42]  Félix A. Rey,et al.  Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein☆ , 2005, Virology.

[43]  A. Carfi,et al.  Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  G. Gao,et al.  Structural Basis for Coronavirus-mediated Membrane Fusion , 2004, Journal of Biological Chemistry.

[45]  Xiaolei Yin,et al.  Identification of an Antigenic Determinant on the S2 Domain of the Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Capable of Inducing Neutralizing Antibodies , 2004, Journal of Virology.

[46]  B. Bosch,et al.  The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex , 2003, Journal of Virology.

[47]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[48]  F. Taguchi,et al.  Soluble Receptor Potentiates Receptor-Independent Infection by Murine Coronavirus , 2002, Journal of Virology.

[49]  T. Gallagher,et al.  Variations in Disparate Regions of the Murine Coronavirus Spike Protein Impact the Initiation of Membrane Fusion , 2001, Journal of Virology.

[50]  P. S. Kim,et al.  Crystal structure of GCN4-pIQI, a trimeric coiled coil with buried polar residues. , 1998, Journal of molecular biology.

[51]  J. Fleming,et al.  Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of complex tridimensional structure , 1993, Journal of virology.

[52]  F. Corpet Multiple sequence alignment with hierarchical clustering. , 1988, Nucleic acids research.

[53]  Conrad C. Huang,et al.  Visualizing density maps with UCSF Chimera. , 2007, Journal of structural biology.