A DISTRIBUTED OBJECT-ORIENTED FINITE-ELEMENT ANALYSIS PROGRAM ARCHITECTURE

This article presents a distributed object-oriented design for a nonlinear finite-element analysis using the message-passing paradigm and a single-program, multiple-data scheme. The architecture is an extension of an existing sequential object-oriented architecture. The design recognizes the costly communication startup time penalty by attempting to minimize the frequency of communications. This is facilitated by distributing not only the elements in the model but also their associated nodes and mapping between the degrees of freedom and the analytical equations of equilibrium. The proposed object design was implemented and tested on a nonlinear static pushover analysis of three moment-resisting frames.