Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles.

[1]  C. Ané,et al.  Comparing two Bayesian methods for gene tree/species tree reconstruction: simulations with incomplete lineage sorting and horizontal gene transfer. , 2011, Systematic biology.

[2]  Joseph W. Brown,et al.  A Molecular Genetic Timescale for the Diversification of Autotrophic Stramenopiles (Ochrophyta): Substantive Underestimation of Putative Fossil Ages , 2010, PloS one.

[3]  A. P. Wolfe,et al.  Complex phylogeographic patterns in the freshwater alga Synura provide new insights into ubiquity vs. endemism in microbial eukaryotes , 2010, Molecular ecology.

[4]  A. Horák,et al.  A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids , 2010, Proceedings of the National Academy of Sciences.

[5]  C. Gobler,et al.  ANALYSES OF THE COMPLETE CHLOROPLAST GENOME SEQUENCES OF TWO MEMBERS OF THE PELAGOPHYCEAE: AUREOCOCCUS ANOPHAGEFFERENS CCMP1984 AND AUREOUMBRA LAGUNENSIS CCMP1507 1 , 2010 .

[6]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[7]  C. Jubin,et al.  Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids , 2009, BMC Evolutionary Biology.

[8]  L. Stein,et al.  Species trees from highly incongruent gene trees in rice. , 2009, Systematic biology.

[9]  L. Katz,et al.  Multigene evidence for the placement of a heterotrophic amoeboid lineage Leukarachnion sp. among photosynthetic stramenopiles. , 2009, Protist.

[10]  K. Jakobsen,et al.  Seven gene phylogeny of heterokonts. , 2009, Protist.

[11]  T. Nakayama,et al.  Aurearenophyceae classis nova, a new class of Heterokontophyta based on a new marine unicellular alga Aurearena cruciata gen. et sp. nov. inhabiting sandy beaches. , 2008, Protist.

[12]  O. Gascuel,et al.  An improved general amino acid replacement matrix. , 2008, Molecular biology and evolution.

[13]  G. Fritzsch,et al.  Synchroma grande spec. nov. (Synchromophyceae class. nov., Heterokontophyta): an amoeboid marine alga with unique plastid complexes. , 2007, Protist.

[14]  Mark Wilkinson,et al.  Of clades and clans: terms for phylogenetic relationships in unrooted trees. , 2007, Trends in ecology & evolution.

[15]  David Posada,et al.  MtArt: a new model of amino acid replacement for Arthropoda. , 2006, Molecular biology and evolution.

[16]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[17]  Thomas J Naughton,et al.  Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified , 2006, BMC Evolutionary Biology.

[18]  T. Cavalier-smith,et al.  Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista) , 2006, Journal of Molecular Evolution.

[19]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[20]  E. Yang,et al.  Evidence for two independent lineages of Griffithsia (Ceramiaceae, Rhodophyta) based on plastid protein-coding psaA, psbA, and rbcL gene sequences. , 2004, Molecular phylogenetics and evolution.

[21]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[22]  Debashish Bhattacharya,et al.  A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Y. Peer,et al.  Evolutionary relationships among heterokont algae (the autotrophic stramenopiles) based on combined analyses of small and large subunit ribosomal RNA. , 2002 .

[24]  T. Nakayama,et al.  A new class of the stramenopiles, Placididea Classis nova: description of Placidia cafeteriopsis gen. et sp. nov. , 2002, Protist.

[25]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[26]  R. Bidigare,et al.  The Pinguiophyceae classis nova, a new class of photosynthetic stramenopiles whose members produce large amounts of omega‐3 fatty acids , 2002 .

[27]  B. Leadbeater,et al.  The flagellates : unity, diversity and evolution , 2001 .

[28]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[29]  T. Sang,et al.  Testing hybridization hypotheses based on incongruent gene trees. , 2000, Systematic biology.

[30]  P. Waddell,et al.  Plastid Genome Phylogeny and a Model of Amino Acid Substitution for Proteins Encoded by Chloroplast DNA , 2000, Journal of Molecular Evolution.

[31]  G. Sartoni,et al.  Ultrastructure of vegetative and motile cells, and zoosporogenesis in Chrysonephos lewisii (Taylor) Taylor (Sarcinochrysidales, Pelagophyceae) in relation to taxonomy , 1999 .

[32]  T. Horiguchi,et al.  Ultrastructure of Stylodinium Iittorale (Dinophyceae) with special reference to the stalk and apical stalk complex , 1998 .

[33]  R. Bidigare,et al.  Phaeothamniophyceae Classis Nova: A New Lineage of Chromophytes Based upon Photosynthetic Pigments, rbcL Sequence Analysis and Ultrastructure. , 1998, Protist.

[34]  R. Andersen,et al.  Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated. , 1997, Molecular biology and evolution.

[35]  R. Andersen,et al.  Phylogenetic relationships of the Raphidophyceae and Xanthophyceae as inferred from nucleotide sequences of the 18S ribosomal RNA gene. , 1997, American journal of botany.

[36]  R. Andersen,et al.  PHYLOGENETIC AFFINITIES OF THE SARCINOCHRYSIDALES AND CHRYSOMERIDALES (HETEROKONTA) BASED ON ANALYSES OF MOLECULAR AND COMBINED DATA 1 , 1997 .

[37]  R. Andersen,et al.  Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Detlef D. Leipe,et al.  The stramenopiles from a molecular perspective 16S-like rRNA sequences from Labyrinthuloides minuta and Cafeteria roenbergensis , 1994 .

[39]  R. Andersen,et al.  ULTRASTRUCTURE AND 18S RRNA GENE SEQUENCE FOR PELAGOMONAS CALCEOLATA GEN. ET SP. NOV. AND THE DESCRIPTION OF A NEW ALGAL CLASS, THE PELAGOPHYCEAE CLASSIS NOV. 1 , 1993 .

[40]  M. Sogin,et al.  A NEW PHYLOGENY FOR CHROMOPHYTE ALGAE USING 16S‐LIKE RRNA SEQUENCES FROM MALLOMONAS PAPILLOSA (SYNUROPHYCEAE) AND TRIBONEMA AEQUALE (XANTHOPHYCEAE) 1 , 1991 .

[41]  R. Andersen The cytoskeleton of chromophyte algae , 1991, Protoplasma.

[42]  G. Estabrook,et al.  Some Concepts for the Estimation of Evolutionary Relationships in Systematic Botany , 1978 .

[43]  Cristian S. Calude,et al.  Discrete Mathematics and Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[44]  Michael A. Charleston,et al.  Reconciled trees and incongruent gene and species trees , 1996, Mathematical Hierarchies and Biology.

[45]  T. Bjørnland Distribution patterns of carotenoids in relation to chromophyte phylogeny and systematics , 1989 .