Improving the interpretability of integer linear programming methods for biological subnetwork inference

[1]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[2]  Roded Sharan,et al.  Associating Genes and Protein Complexes with Disease via Network Propagation , 2010, PLoS Comput. Biol..

[3]  Yukiko Matsuoka,et al.  Adding Protein Context to the Human Protein-Protein Interaction Network to Reveal Meaningful Interactions , 2013, PLoS Comput. Biol..

[4]  V. Thorsson,et al.  Discovery of regulatory interactions through perturbation: inference and experimental design. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[5]  J. Warringer,et al.  The HOG Pathway Dictates the Short-Term Translational Response after Hyperosmotic Shock , 2010, Molecular biology of the cell.

[6]  Sebastian Bauer,et al.  Model-based gene set analysis for Bioconductor , 2011, Bioinform..

[7]  Bart De Moor,et al.  An unbiased evaluation of gene prioritization tools , 2012, Bioinform..

[8]  L. Avery,et al.  Ordering gene function: the interpretation of epistasis in regulatory hierarchies. , 1992, Trends in genetics : TIG.

[9]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[10]  Anupam Gupta,et al.  Discovering pathways by orienting edges in protein interaction networks , 2010, Nucleic acids research.

[11]  D. Frank Hsu,et al.  Comparing Rank and Score Combination Methods for Data Fusion in Information Retrieval , 2005, Information Retrieval.

[12]  J. Castle,et al.  An integrative genomics approach to infer causal associations between gene expression and disease , 2005, Nature Genetics.

[13]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[14]  R. Andino,et al.  An Amphipathic α-Helix Controls Multiple Roles of Brome Mosaic Virus Protein 1a in RNA Replication Complex Assembly and Function , 2009, PLoS pathogens.

[15]  Henning Hermjakob,et al.  The Reactome pathway Knowledgebase , 2015, Nucleic acids research.

[16]  P. Ahlquist,et al.  Membrane-shaping host reticulon proteins play crucial roles in viral RNA replication compartment formation and function , 2010, Proceedings of the National Academy of Sciences.

[17]  G. Gao,et al.  The ubiquitin-proteasome pathway in viral infections. , 2006, Canadian journal of physiology and pharmacology.

[18]  Satoru Miyano,et al.  Identification of Genetic Networks from a Small Number of Gene Expression Patterns Under the Boolean Network Model , 1998, Pacific Symposium on Biocomputing.

[19]  Wojciech Szpankowski,et al.  Pairwise Alignment of Protein Interaction Networks , 2006, J. Comput. Biol..

[20]  I. Herskowitz,et al.  The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. , 1998, Genes & development.

[21]  Ernest Fraenkel,et al.  ResponseNet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data , 2011, Nucleic Acids Res..

[22]  Audrey P. Gasch,et al.  The environmental stress response: a common yeast response to diverse environmental stresses , 2003 .

[23]  Martin Gebser,et al.  Detecting inconsistencies in large biological networks with answer set programming , 2008, Theory and Practice of Logic Programming.

[24]  Yolanda T. Chong,et al.  A quantitative literature-curated gold standard for kinase-substrate pairs , 2011, Genome Biology.

[25]  J. Thorner,et al.  Stress resistance and signal fidelity independent of nuclear MAPK function , 2008, Proceedings of the National Academy of Sciences.

[26]  N. Friedman,et al.  Structure and function of a transcriptional network activated by the MAPK Hog1 , 2008, Nature Genetics.

[27]  T. M. Murali,et al.  Computational prediction of host-pathogen protein-protein interactions , 2007, ISMB/ECCB.

[28]  Brandi Gancarz,et al.  Intersection of the Multivesicular Body Pathway and Lipid Homeostasis in RNA Replication by a Positive-Strand RNA Virus , 2011, Journal of Virology.

[29]  J. R. Quevedo,et al.  Genetical genomics: use all data , 2007, BMC Genomics.

[30]  J. Broach Nutritional Control of Growth and Development in Yeast , 2012, Genetics.

[31]  John R. Yates,et al.  Hog1 Mitogen-Activated Protein Kinase (MAPK) Interrupts Signal Transduction between the Kss1 MAPK and the Tec1 Transcription Factor To Maintain Pathway Specificity , 2009, Eukaryotic Cell.

[32]  Eulàlia de Nadal,et al.  Multilayered control of gene expression by stress‐activated protein kinases , 2010, The EMBO journal.

[33]  Jason B. Ernst,et al.  Integrating multiple evidence sources to predict transcription factor binding in the human genome. , 2010, Genome research.

[34]  Kuan-Teh Jeang,et al.  A Genome-wide Short Hairpin RNA Screening of Jurkat T-cells for Human Proteins Contributing to Productive HIV-1 Replication* , 2009, The Journal of Biological Chemistry.

[35]  M. Newton,et al.  Genome-Wide Analysis of Host Factors in Nodavirus RNA Replication , 2014, PloS one.

[36]  Satoru Miyano,et al.  Algorithms for Identifying Boolean Networks and Related Biological Networks Based on Matrix Multiplication and Fingerprint Function , 2000, J. Comput. Biol..

[37]  M. Tyers,et al.  Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. , 2001, Molecular biology of the cell.

[38]  N. Perrimon,et al.  Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. , 2005, Genes & development.

[39]  Jignesh M. Patel,et al.  SAGA: a subgraph matching tool for biological graphs , 2007, Bioinform..

[40]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[41]  Roded Sharan,et al.  Network orientation via shortest paths , 2014, Bioinform..

[42]  Ken E. Whelan,et al.  The Automation of Science , 2009, Science.

[43]  I. Simon,et al.  Reconstructing dynamic regulatory maps , 2007, Molecular systems biology.

[44]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[45]  Richard D. Smith,et al.  Protein co-expression network analysis (ProCoNA) , 2013, Journal of Clinical Bioinformatics.

[46]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[47]  H. Saito,et al.  Regulation of the osmoregulatory HOG MAPK cascade in yeast. , 2004, Journal of biochemistry.

[48]  J. Schaber,et al.  Time-Dependent Quantitative Multicomponent Control of the G1-S Network by the Stress-Activated Protein Kinase Hog1 upon Osmostress , 2011, Science Signaling.

[49]  Edith D. Wong,et al.  Saccharomyces Genome Database: the genomics resource of budding yeast , 2011, Nucleic Acids Res..

[50]  Pierre Dupont,et al.  Systems biology Advance Access publication March 12, 2010 , 2009 .

[51]  I. Herskowitz,et al.  Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. , 2003, Molecular biology of the cell.

[52]  T. Hughes,et al.  Exploration of Essential Gene Functions via Titratable Promoter Alleles , 2004, Cell.

[53]  Yuriko Tomita,et al.  Mutation of Host dnaJ Homolog Inhibits Brome Mosaic Virus Negative-Strand RNA Synthesis , 2003, Journal of Virology.

[54]  Nir Friedman,et al.  Physical Module Networks: an integrative approach for reconstructing transcription regulation , 2011, Bioinform..

[55]  Stephen Muggleton,et al.  Application of abductive ILP to learning metabolic network inhibition from temporal data , 2006, Machine Learning.

[56]  Audrey P. Gasch,et al.  Dynamic Changes in Nucleosome Occupancy Are Not Predictive of Gene Expression Dynamics but Are Linked to Transcription and Chromatin Regulators , 2012, Molecular and Cellular Biology.

[57]  Mark Craven,et al.  Limited Agreement of Independent RNAi Screens for Virus-Required Host Genes Owes More to False-Negative than False-Positive Factors , 2013, PLoS Comput. Biol..

[58]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[59]  S. Pu,et al.  Up-to-date catalogues of yeast protein complexes , 2008, Nucleic acids research.

[60]  Sang Hyon Kim,et al.  Phosphorylation of cucumber mosaic virus RNA polymerase 2a protein inhibits formation of replicase complex , 2002, The EMBO journal.

[61]  P. Ahlquist,et al.  Host Acyl Coenzyme A Binding Protein Regulates Replication Complex Assembly and Activity of a Positive-Strand RNA Virus , 2012, Journal of Virology.

[62]  Martin H. Schaefer,et al.  HIPPIE: Integrating Protein Interaction Networks with Experiment Based Quality Scores , 2012, PloS one.

[63]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[64]  Martin Steffen,et al.  Automated modelling of signal transduction networks , 2002, BMC Bioinformatics.

[65]  Esther M. Arkin,et al.  A note on orientations of mixed graphs , 2002, Discret. Appl. Math..

[66]  Amy S. Espeseth,et al.  Genome-scale RNAi screen for host factors required for HIV replication. , 2008, Cell host & microbe.

[67]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[68]  Gos Micklem,et al.  YeastMine—an integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit , 2012, Database J. Biol. Databases Curation.

[69]  Y. Pilpel,et al.  Adaptive prediction of environmental changes by microorganisms , 2009, Nature.

[70]  Anastasios Bezerianos,et al.  Growing functional modules from a seed protein via integration of protein interaction and gene expression data , 2007, BMC Bioinformatics.

[71]  I. Simon,et al.  A probabilistic generative model for GO enrichment analysis , 2008, Nucleic acids research.

[72]  Alexandre P. Francisco,et al.  YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface , 2010, Nucleic Acids Res..

[73]  Yoav Arava,et al.  Yeast translational response to high salinity: global analysis reveals regulation at multiple levels. , 2008, RNA.

[74]  D. Teis,et al.  Assembly and disassembly of the ESCRT-III membrane scission complex , 2011, FEBS letters.

[75]  Tzu-Chi Chen,et al.  POINeT: protein interactome with sub-network analysis and hub prioritization , 2009, BMC Bioinformatics.

[76]  E. Lander,et al.  Remodeling of yeast genome expression in response to environmental changes. , 2001, Molecular biology of the cell.

[77]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[78]  D. Lauffenburger,et al.  Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction , 2009, Molecular systems biology.

[79]  Sridhar Hannenhalli,et al.  PTM-Switchboard—a database of posttranslational modifications of transcription factors, the mediating enzymes and target genes , 2008, Nucleic Acids Res..

[80]  T. M. Murali,et al.  Network-Based Prediction and Analysis of HIV Dependency Factors , 2011, Annual International Conference on Research in Computational Molecular Biology.

[81]  Isaac Meilijson,et al.  Quantitative Analysis of Genetic and Neuronal Multi-Perturbation Experiments , 2005, PLoS Comput. Biol..

[82]  A. Gasch,et al.  Defining flexible vs. inherent promoter architectures , 2012, Nucleus.

[83]  Tsuyoshi Kato,et al.  Selective integration of multiple biological data for supervised network inference , 2005, Bioinform..

[84]  Ziv Bar-Joseph,et al.  A Network-based Approach for Predicting Missing Pathway Interactions , 2012, PLoS Comput. Biol..

[85]  P. Ahlquist,et al.  Brome Mosaic Virus RNA Replication Proteins 1a and 2a Colocalize and 1a Independently Localizes on the Yeast Endoplasmic Reticulum , 1999, Journal of Virology.

[86]  Tommi S. Jaakkola,et al.  Physical Network Models , 2004, J. Comput. Biol..

[87]  S Fuhrman,et al.  Reveal, a general reverse engineering algorithm for inference of genetic network architectures. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[88]  R. König,et al.  Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication , 2008, Cell.

[89]  M. Proft,et al.  Toward a genomic view of the gene expression program regulated by osmostress in yeast. , 2010, Omics : a journal of integrative biology.

[90]  Matthew D. Dyer,et al.  Supervised learning and prediction of physical interactions between human and HIV proteins. , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[91]  John H. Morris,et al.  Global landscape of HIV–human protein complexes , 2011, Nature.

[92]  Sudipto Guha,et al.  Approximation algorithms for directed Steiner problems , 1999, SODA '98.

[93]  Lore Cloots,et al.  PheNetic: network-based interpretation of unstructured gene lists in E. coli. , 2013, Molecular bioSystems.

[94]  Zoubin Ghahramani,et al.  Gene function prediction from synthetic lethality networks via ranking on demand , 2010, Bioinform..

[95]  Enrique Herrero,et al.  Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae , 2001, Molecular microbiology.

[96]  Mehmet Koyutürk,et al.  An Integrative -omics Approach to Identify Functional Sub-Networks in Human Colorectal Cancer , 2010, PLoS Comput. Biol..

[97]  M. Daly,et al.  Guilt by association , 2000, Nature Genetics.

[98]  D. Karger,et al.  Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity , 2009, Nature Genetics.

[99]  P. Robinson,et al.  Walking the interactome for prioritization of candidate disease genes. , 2008, American journal of human genetics.

[100]  R. Shamir,et al.  Refinement and expansion of signaling pathways: the osmotic response network in yeast. , 2007, Genome research.

[101]  Peter N. Robinson,et al.  GOing Bayesian: model-based gene set analysis of genome-scale data , 2010, Nucleic acids research.

[102]  Roded Sharan,et al.  Optimally Orienting Physical Networks , 2011, RECOMB.

[103]  Corey Nislow,et al.  Multiple Means to the Same End: The Genetic Basis of Acquired Stress Resistance in Yeast , 2011, PLoS genetics.

[104]  M. Vingron,et al.  Elucidating regulatory mechanisms downstream of a signaling pathway using informative experiments , 2009, Molecular systems biology.

[105]  Oliver Ray,et al.  Automatic Revision of Metabolic Networks through Logical Analysis of Experimental Data , 2009, ILP.

[106]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[107]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[108]  T. Hwa,et al.  Coordination of bacterial proteome with metabolism by cyclic AMP signalling , 2013, Nature.

[109]  Christian Borgs,et al.  Simultaneous Reconstruction of Multiple Signaling Pathways via the Prize-Collecting Steiner Forest Problem , 2012, J. Comput. Biol..

[110]  J. Qian,et al.  Construction of human activity-based phosphorylation networks , 2013, Molecular systems biology.

[111]  Leiliang Zhang,et al.  Interplay between poxviruses and the cellular ubiquitin/ubiquitin‐like pathways , 2009, FEBS letters.

[112]  J. Hurley,et al.  Membrane budding and scission by the ESCRT machinery: it's all in the neck , 2010, Nature Reviews Molecular Cell Biology.

[113]  Noga Alon,et al.  Color-coding , 1995, JACM.

[114]  Áine McKnight,et al.  A whole genome screen for HIV restriction factors , 2011, Retrovirology.

[115]  A. Gerber,et al.  Stress-Dependent Coordination of Transcriptome and Translatome in Yeast , 2009, PLoS biology.

[116]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[117]  Hiroaki Kitano,et al.  A framework for mapping, visualisation and automatic model creation of signal-transduction networks , 2012, Molecular systems biology.

[118]  Roded Sharan,et al.  Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction Networks , 2006, J. Comput. Biol..

[119]  Tobias Müller,et al.  Identifying functional modules in protein–protein interaction networks: an integrated exact approach , 2008, ISMB.

[120]  Nicola J. Mulder,et al.  From sets to graphs: towards a realistic enrichment analysis of transcriptomic systems , 2011, Bioinform..

[121]  Ting Wang,et al.  An improved map of conserved regulatory sites for Saccharomyces cerevisiae , 2006, BMC Bioinformatics.

[122]  P. Blanchette,et al.  Manipulation of the ubiquitin-proteasome pathway by small DNA tumor viruses. , 2009, Virology.

[123]  Zhaohui S. Qin,et al.  A Global Protein Kinase and Phosphatase Interaction Network in Yeast , 2010, Science.

[124]  E. Fraenkel,et al.  Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks , 2009, Science Signaling.

[125]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[126]  W. H. Mager,et al.  Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway , 2000, Molecular microbiology.

[127]  David Page,et al.  Inferring Regulatory Networks from Time Series Expression Data and Relational Data Via Inductive Logic Programming , 2007, ILP.

[128]  Achim Tresch,et al.  Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast , 2011, Molecular systems biology.

[129]  Tao Jiang,et al.  Uncover disease genes by maximizing information flow in the phenome–interactome network , 2011, Bioinform..

[130]  R. Wickner,et al.  Double-stranded RNA viruses of Saccharomyces cerevisiae , 1996, Microbiological reviews.

[131]  C. Guthrie,et al.  Diverse environmental stresses elicit distinct responses at the level of pre-mRNA processing in yeast. , 2011, RNA.

[132]  Yanjun Qi,et al.  Prediction of Interactions Between HIV-1 and Human Proteins by Information Integration , 2008, Pacific Symposium on Biocomputing.

[133]  Russell G. Jones,et al.  Tumor suppressors and cell metabolism: a recipe for cancer growth. , 2009, Genes & development.

[134]  S. Buratowski,et al.  The CTD code , 2003, Nature Structural Biology.

[135]  H. Shimizu,et al.  Comparison of transcriptional responses to osmotic stresses induced by NaCl and sorbitol additions in Saccharomyces cerevisiae using DNA microarray. , 2006, Journal of bioscience and bioengineering.

[136]  Jianbo Chen,et al.  A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. , 2002, Molecular cell.

[137]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[138]  Y. Araki,et al.  Ski7p G protein interacts with the exosome and the Ski complex for 3′‐to‐5′ mRNA decay in yeast , 2001, The EMBO journal.

[139]  Kai Li,et al.  Directing Experimental Biology: A Case Study in Mitochondrial Biogenesis , 2009, PLoS Comput. Biol..

[140]  Yonina C. Eldar,et al.  eQED: an efficient method for interpreting eQTL associations using protein networks , 2008, Molecular systems biology.

[141]  A. Gasch,et al.  The histone deacetylase Rpd3p is required for transient changes in genomic expression in response to stress , 2009, Genome Biology.

[142]  Megan N. McClean,et al.  Cross-talk and decision making in MAP kinase pathways , 2007, Nature Genetics.

[143]  R. Sharan,et al.  Toward accurate reconstruction of functional protein networks , 2009, Molecular systems biology.

[144]  John R. Walker,et al.  NetAtlas: A Cytoscape Plugin to Examine Signaling Networks Based on Tissue Gene Expression , 2008, Silico Biol..

[145]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[146]  E. Servienė,et al.  Genome-wide screen identifies host genes affecting viral RNA recombination. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[147]  Manjunatha Jagalur,et al.  Causal inference of regulator-target pairs by gene mapping of expression phenotypes , 2005, BMC Genomics.

[148]  Jonathan R. Warner,et al.  Potential Interface between Ribosomal Protein Production and Pre-rRNA Processing , 2007, Molecular and Cellular Biology.

[149]  Nicola J. Rinaldi,et al.  Computational discovery of gene modules and regulatory networks , 2003, Nature Biotechnology.

[150]  Julia Salzman,et al.  Proteome-Wide Search Reveals Unexpected RNA-Binding Proteins in Saccharomyces cerevisiae , 2010, PloS one.

[151]  Florian Markowetz,et al.  How to Understand the Cell by Breaking It: Network Analysis of Gene Perturbation Screens , 2009, PLoS Comput. Biol..

[152]  Eytan Ruppin,et al.  Inferring Functional Pathways from Multi-Perturbation Data , 2006, ISMB.

[153]  Roded Sharan,et al.  The Approximability of Shortest Path-Based Graph Orientations of Protein-Protein Interaction Networks , 2013, J. Comput. Biol..

[154]  Edward M. Marcotte,et al.  Prediction of gene–phenotype associations in humans, mice, and plants using phenologs , 2013, BMC Bioinformatics.

[155]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[156]  M. Gerstein,et al.  Global analysis of protein phosphorylation in yeast , 2005, Nature.

[157]  P. Ahlquist,et al.  Helicase and Capping Enzyme Active Site Mutations in Brome Mosaic Virus Protein 1a Cause Defects in Template Recruitment, Negative-Strand RNA Synthesis, and Viral RNA Capping , 2000, Journal of Virology.

[158]  M. Carlson,et al.  A specific catalytic subunit isoform of protein kinase CK2 is required for phosphorylation of the repressor Nrg1 in Saccharomyces cerevisiae , 2006, Current Genetics.

[159]  Roded Sharan,et al.  SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments , 2007, ISMB/ECCB.

[160]  Jing Zhu,et al.  Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network , 2007, Bioinform..

[161]  T. Ideker,et al.  Systematic interpretation of genetic interactions using protein networks , 2005, Nature Biotechnology.

[162]  W. Sundquist,et al.  HIV-1 assembly, budding, and maturation. , 2012, Cold Spring Harbor perspectives in medicine.

[163]  Christopher H. Bryant,et al.  Functional genomic hypothesis generation and experimentation by a robot scientist , 2004, Nature.

[164]  Honglin Luo,et al.  The ubiquitin‐proteasome system in positive‐strand RNA virus infection , 2012, Reviews in medical virology.

[165]  I S Kohane,et al.  Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[166]  Kriston L. McGary,et al.  Systematic discovery of nonobvious human disease models through orthologous phenotypes , 2010, Proceedings of the National Academy of Sciences.

[167]  Aya Iwaki,et al.  Acidic stress induces the formation of P-bodies, but not stress granules, with mild attenuation of bulk translation in Saccharomyces cerevisiae. , 2012, The Biochemical journal.

[168]  Claudio De Virgilio,et al.  Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae , 2010, Current Genetics.

[169]  Stefan Hohmann,et al.  Yeast Stress Responses , 1997, Topics in Current Genetics.

[170]  Trey Ideker,et al.  Protein Networks as Logic Functions in Development and Cancer , 2011, PLoS Comput. Biol..

[171]  Sarath Chandra Janga,et al.  A Screen for RNA-Binding Proteins in Yeast Indicates Dual Functions for Many Enzymes , 2010, PloS one.

[172]  D. P. Wall,et al.  Detecting putative orthologs , 2003, Bioinform..

[173]  Bryan J Venters,et al.  A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. , 2011, Molecular cell.

[174]  Roded Sharan,et al.  PathBLAST: a tool for alignment of protein interaction networks , 2004, Nucleic Acids Res..

[175]  Mark Gerstein,et al.  Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. , 2011, Genes & development.

[176]  Stephen Muggleton,et al.  Developing a Logical Model of Yeast Metabolism , 2001, Electron. Trans. Artif. Intell..

[177]  Michelle S. Scott,et al.  Identifying Regulatory Subnetworks for a Set of Genes* , 2005, Molecular & Cellular Proteomics.

[178]  Jianbo Chen,et al.  Yeast Lsm1p-7p/Pat1p Deadenylation-Dependent mRNA-Decapping Factors Are Required for Brome Mosaic Virus Genomic RNA Translation , 2003, Molecular and Cellular Biology.

[179]  Mark B Gerstein,et al.  Dynamic and complex transcription factor binding during an inducible response in yeast. , 2009, Genes & development.

[180]  Pedro Mendes,et al.  Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network , 2012, BMC Systems Biology.

[181]  Lorenz Wernisch,et al.  Reconstruction of gene networks using Bayesian learning and manipulation experiments , 2004, Bioinform..

[182]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[183]  Carl Kingsford,et al.  The power of protein interaction networks for associating genes with diseases , 2010, Bioinform..

[184]  Fatih Erdogan Sevilgen,et al.  PHISTO: pathogen-host interaction search tool , 2013, Bioinform..

[185]  S. Lorenz,et al.  Cdc28 kinase activity regulates the basal transcription machinery at a subset of genes , 2012, Proceedings of the National Academy of Sciences.

[186]  Audrey P Gasch,et al.  Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. , 2008, Molecular biology of the cell.

[187]  Jesper V Olsen,et al.  Global analysis of the yeast osmotic stress response by quantitative proteomics. , 2009, Molecular bioSystems.

[188]  Jason Weston,et al.  Learning Gene Functional Classifications from Multiple Data Types , 2002, J. Comput. Biol..

[189]  Z. Bar-Joseph,et al.  Linking the signaling cascades and dynamic regulatory networks controlling stress responses , 2013, Genome research.

[190]  P. Bourgine,et al.  Topological and causal structure of the yeast transcriptional regulatory network , 2002, Nature Genetics.

[191]  M. Barna Ribosomes take control , 2012, Proceedings of the National Academy of Sciences.

[192]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[193]  P. Ahlquist,et al.  Interactions between Brome Mosaic Virus RNAs and Cytoplasmic Processing Bodies , 2007, Journal of Virology.

[194]  Vesteinn Thorsson,et al.  Prediction of phenotype and gene expression for combinations of mutations , 2007, Molecular systems biology.