Characterizing dynamics with covariant Lyapunov vectors.

A general method to determine covariant Lyapunov vectors in both discrete- and continuous-time dynamical systems is introduced. This allows us to address fundamental questions such as the degree of hyperbolicity, which can be quantified in terms of the transversality of these intrinsic vectors. For spatially extended systems, the covariant Lyapunov vectors have localization properties and spatial Fourier spectra qualitatively different from those composing the orthonormalized basis obtained in the standard procedure used to calculate the Lyapunov exponents.

[1]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[2]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[3]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[4]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[5]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[6]  Antonio Politi,et al.  Distribution of characteristic exponents in the thermodynamic limit , 1986 .

[7]  K. Kaneko Lyapunov analysis and information flow in coupled map lattices , 1986 .

[8]  Peter Grassberger,et al.  Information content and predictability of lumped and distributed dynamical systems , 1989 .

[9]  David Ruelle,et al.  The thermodynamic formalism for expanding maps , 1989 .

[10]  Lyapunov Analysis of Spatiotemporal Intermittency , 1993 .

[11]  Bruno Eckhardt,et al.  Local Lyapunov exponents in chaotic systems , 1993 .

[12]  Y. Kuramoto,et al.  Anomalous Lyapunov spectrum in globally coupled oscillators , 1995 .

[13]  Mees,et al.  Estimation of Lyapunov exponents of dynamical systems using a spatial average. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Cohen,et al.  Dynamical Ensembles in Nonequilibrium Statistical Mechanics. , 1994, Physical review letters.

[15]  A. B. Potapov,et al.  On the concept of stationary Lyapunov basis , 1998 .

[16]  Lyapunov exponents from node-counting arguments , 1998, chao-dyn/9803002.

[17]  Ilarion V. Melnikov,et al.  Mechanisms of extensive spatiotemporal chaos in Rayleigh–Bénard convection , 2000, Nature.

[18]  A. Mirlin,et al.  Statistics of energy levels and eigenfunctions in disordered systems , 2000 .

[19]  B R Hunt,et al.  Local low dimensionality of atmospheric dynamics. , 2001, Physical review letters.

[20]  UNIFORM (PROJECTIVE) HYPERBOLICITY OR NO HYPERBOLICITY: A DICHOTOMY FOR GENERIC CONSERVATIVE MAPS , 2002 .

[21]  Erik Mosekilde,et al.  Noise-induced macroscopic bifurcations in globally coupled chaotic units. , 2004, Physical review letters.

[22]  J. Eckmann,et al.  Lyapunov Modes in Hard-Disk Systems , 2004, nlin/0404007.

[23]  G. Radons,et al.  Hydrodynamic Lyapunov modes in coupled map lattices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Antonio Politi,et al.  From synchronization to Lyapunov exponents and back , 2006 .