The effect of magnetic fields on star cluster formation

We examine the effect of magnetic fields on star cluster formation by performing simulations following the self-gravitating collapse of a turbulent molecular cloud to form stars in ideal magnetohydrodynamics. The collapse of the cloud is computed for global mass-to-flux ratios of ∞, 20, 10, 5 and 3, i.e. using both weak and strong magnetic fields. Whilst even at very low strengths the magnetic field is able to significantly influence the star formation process, for magnetic fields with plasma β< 1 the results are substantially different to the hydrodynamic case. In these cases we find large-scale magnetically supported voids imprinted in the cloud structure; anisotropic turbulent motions and column density striations aligned with the magnetic field lines, both of which have recently been observed in the Taurus molecular cloud. We also find strongly suppressed accretion in the magnetized runs, leading to up to a 75 per cent reduction in the amount of mass converted into stars over the course of the calculations and a more quiescent mode of star formation. There is also some indication that the relative formation efficiency of brown dwarfs is lower in the strongly magnetized runs due to a reduction in the importance of protostellar ejections.

[1]  Eve C. Ostriker,et al.  Spectral Properties of Compressible Magnetohydrodynamic Turbulence from Numerical Simulations , 2003, astro-ph/0303103.

[2]  J. Monaghan,et al.  A Switch to Reduce SPH Viscosity , 1997 .

[3]  Matthew R. Bate,et al.  A faster algorithm for smoothed particle hydrodynamics with radiative transfer in the flux‐limited diffusion approximation , 2005 .

[4]  B. Elmegreen On the Rapid Collapse and Evolution of Molecular Clouds , 2007, 0707.2252.

[5]  Michael L. Norman,et al.  The Formation of Self-Gravitating Cores in Turbulent Magnetized Clouds , 2003, astro-ph/0312622.

[6]  J. Monaghan SPH compressible turbulence , 2002, astro-ph/0204118.

[7]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[8]  T. Mouschovias,et al.  Ambipolar diffusion, interstellar dust, and the formation of cloud cores and protostars. IV. Effect of ultraviolet ionization and magnetically controlled infall rate , 1995 .

[9]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[10]  Daniel J. Price,et al.  Smoothed Particle Magnetohydrodynamics – I. Algorithm and tests in one dimension , 2003, astro-ph/0310789.

[11]  D. McConnell,et al.  Publications of the Astronomical Society of Australia , 2001 .

[12]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[13]  Fumitaka Nakamura,et al.  Magnetically Regulated Star Formation in Turbulent Clouds , 2004 .

[14]  Shu-ichiro Inutsuka,et al.  A Radiation Hydrodynamic Model for Protostellar Collapse. II. The Second Collapse and the Birth of a Protostar , 2000 .

[15]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[16]  M. Wolleben,et al.  Faraday screens associated with local molecular clouds , 2004, astro-ph/0409339.

[17]  R. Teyssier,et al.  Magnetic processes in a collapsing dense core II. Fragmentation. Is there a fragmentation crisis , 2007, 0709.2887.

[18]  M. Krumholz,et al.  Slow Star Formation in Dense Gas: Evidence and Implications , 2006, astro-ph/0606277.

[19]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[20]  I. Bonnell,et al.  The formation mechanism of brown dwarfs , 2002, astro-ph/0206365.

[21]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[22]  W. D. Watson,et al.  Line Polarization of Molecular Lines at Radio Frequencies: The Case of DR 21(OH) , 2005, astro-ph/0504258.

[23]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[24]  C. McKee Photoionization-regulated Star Formation and the Structure of Molecular Clouds , 1989 .

[25]  J. Lunine,et al.  Protostars and planets III , 1993 .

[26]  M. Wardle,et al.  The conductivity of dense molecular gas , 1998, astro-ph/9810468.

[27]  The Formation of Star Clusters I: 3D Simulations of Hydrodynamic Turbulence , 2004, astro-ph/0406122.

[28]  Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present-Day Star Formation , 2007, astro-ph/0701795.

[29]  C. Clarke,et al.  Accretion and the stellar mass spectrum in small clusters , 1997 .

[30]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[31]  K. Tomisaka,et al.  Directions of Outflows, Disks, Magnetic Fields, and Rotation of Young Stellar Objects in Collapsing Molecular Cloud Cores , 2004, astro-ph/0408086.

[32]  Star formation in unbound giant molecular clouds: the origin of OB associations? , 2005, astro-ph/0503141.

[33]  Tomoaki Matsumoto,et al.  Collapse and fragmentation of rotating magnetized clouds — II. Binary formation and fragmentation of first cores , 2005 .

[34]  The Inability of Ambipolar Diffusion to Set a Characteristic Mass Scale in Molecular Clouds , 2005, astro-ph/0510366.

[35]  Anthony Peter Whitworth,et al.  Modelling ambipolar diffusion with two‐fluid smoothed particle hydrodynamics , 2004 .

[36]  C. McKee,et al.  Equilibrium Star Cluster Formation , 2006, astro-ph/0603278.

[37]  M. Juvela,et al.  The Average Magnetic Field Strength in Molecular Clouds: New Evidence of Super-Alfvénic Turbulence , 2003, astro-ph/0311349.

[38]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[39]  William H. Press,et al.  Dynamic mass exchange in doubly degenerate binaries I , 1990 .

[40]  I. Bonnell,et al.  Star formation through gravitational collapse and competitive accretion , 2006, astro-ph/0604615.

[41]  E. Ostriker,et al.  Dissipation in Compressible Magnetohydrodynamic Turbulence , 1998, astro-ph/9809357.

[42]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[43]  Matthew R. Bate,et al.  The thermodynamics of collapsing molecular cloud cores using smoothed particle hydrodynamics with radiative transfer , 2006 .

[44]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[45]  L. Mestel Stellar magnetism , 1999 .

[46]  M. Bate,et al.  Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .

[47]  K. Keil,et al.  Protostars and Planets V , 2007 .

[48]  I. A. Bonnell,et al.  Modelling accretion in protobinary systems , 1995 .

[49]  Daniel J. Price,et al.  The impact of magnetic fields on single and binary star formation , 2007, astro-ph/0702410.

[50]  J. E. Pringle,et al.  MAGNETIC RECONNECTION AND STAR FORMATION IN MOLECULAR CLOUDS , 1996 .

[51]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[52]  The Millennium Arecibo 21 Centimeter Absorption-Line Survey. IV. Statistics of Magnetic Field, Column Density, and Turbulence , 2005, astro-ph/0501482.

[53]  Daniel J. Price,et al.  Smoothed Particle Magnetohydrodynamics – II. Variational principles and variable smoothing-length terms , 2003, astro-ph/0310790.

[54]  M. Bate The dependence of the initial mass function on metallicity and the opacity limit for fragmentation , 2005 .

[55]  Zhi-Yun Li,et al.  Quiescent Cores and the Efficiency of Turbulence-accelerated, Magnetically Regulated Star Formation , 2005, astro-ph/0502130.

[56]  Joseph John Monaghan,et al.  SPH and Riemann Solvers , 1997 .

[57]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[58]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[59]  Univ. of New South Wales Southern Cross University,et al.  New OH Zeeman Measurements of Magnetic Field Strengths in Molecular Clouds , 2001, astro-ph/0102469.

[60]  L. Spitzer,et al.  Star formation in magnetic dust clouds , 1956 .

[61]  Daniel J. Price,et al.  magma: a three-dimensional, Lagrangian magnetohydrodynamics code for merger applications , 2007, 0705.1441.

[62]  J. Devriendt,et al.  Turbulent Ambipolar Diffusion: Numerical Studies in Two Dimensions , 2003, astro-ph/0309306.

[63]  R. Beck,et al.  Cosmic magnetic fields , 2005 .

[64]  Zhi-Yun Li,et al.  Cluster Formation in Protostellar Outflow-driven Turbulence , 2005, astro-ph/0512278.

[65]  Daniel J. Price,et al.  An energy‐conserving formalism for adaptive gravitational force softening in smoothed particle hydrodynamics and N‐body codes , 2006, astro-ph/0610872.

[66]  L. Spitzer,et al.  Note on the collapse of magnetic interstellar clouds. , 1976 .

[67]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[68]  C. Heiles,et al.  Magnetic fields in diffuse HI and molecular clouds , 2005, astro-ph/0501550.

[69]  Andreas Burkert,et al.  Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1998 .

[70]  Star formation efficiency in driven, supercritical, turbulent clouds , 2005, astro-ph/0507637.

[71]  R. Pudritz,et al.  The formation of star clusters – II. 3D simulations of magnetohydrodynamic turbulence in molecular clouds , 2005, astro-ph/0508562.

[72]  Ambipolar diffusion in interstellar clouds - Time-dependent solutions in one spatial dimension , 1981 .

[73]  Daniel J. Price,et al.  Smoothed particle magnetohydrodynamics - III. Multidimensional tests and the B = 0 constraint , 2005, astro-ph/0509083.

[74]  Matthew R. Bate,et al.  The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds , 2005 .

[75]  Ralph E. Pudritz,et al.  Outflows and Jets from Collapsing Magnetized Cloud Cores , 2005, astro-ph/0508374.