The effect of magnetic fields on star cluster formation
暂无分享,去创建一个
[1] Eve C. Ostriker,et al. Spectral Properties of Compressible Magnetohydrodynamic Turbulence from Numerical Simulations , 2003, astro-ph/0303103.
[2] J. Monaghan,et al. A Switch to Reduce SPH Viscosity , 1997 .
[3] Matthew R. Bate,et al. A faster algorithm for smoothed particle hydrodynamics with radiative transfer in the flux‐limited diffusion approximation , 2005 .
[4] B. Elmegreen. On the Rapid Collapse and Evolution of Molecular Clouds , 2007, 0707.2252.
[5] Michael L. Norman,et al. The Formation of Self-Gravitating Cores in Turbulent Magnetized Clouds , 2003, astro-ph/0312622.
[6] J. Monaghan. SPH compressible turbulence , 2002, astro-ph/0204118.
[7] L. Hartmann,et al. Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.
[8] T. Mouschovias,et al. Ambipolar diffusion, interstellar dust, and the formation of cloud cores and protostars. IV. Effect of ultraviolet ionization and magnetically controlled infall rate , 1995 .
[9] Volker Bromm,et al. The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.
[10] Daniel J. Price,et al. Smoothed Particle Magnetohydrodynamics – I. Algorithm and tests in one dimension , 2003, astro-ph/0310789.
[11] D. McConnell,et al. Publications of the Astronomical Society of Australia , 2001 .
[12] Daniel J. Price. SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.
[13] Fumitaka Nakamura,et al. Magnetically Regulated Star Formation in Turbulent Clouds , 2004 .
[14] Shu-ichiro Inutsuka,et al. A Radiation Hydrodynamic Model for Protostellar Collapse. II. The Second Collapse and the Birth of a Protostar , 2000 .
[15] E. Salpeter. The Luminosity function and stellar evolution , 1955 .
[16] M. Wolleben,et al. Faraday screens associated with local molecular clouds , 2004, astro-ph/0409339.
[17] R. Teyssier,et al. Magnetic processes in a collapsing dense core II. Fragmentation. Is there a fragmentation crisis , 2007, 0709.2887.
[18] M. Krumholz,et al. Slow Star Formation in Dense Gas: Evidence and Implications , 2006, astro-ph/0606277.
[19] A. Boss,et al. Protostars and Planets VI , 2000 .
[20] I. Bonnell,et al. The formation mechanism of brown dwarfs , 2002, astro-ph/0206365.
[21] R. Klessen,et al. Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.
[22] W. D. Watson,et al. Line Polarization of Molecular Lines at Radio Frequencies: The Case of DR 21(OH) , 2005, astro-ph/0504258.
[23] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[24] C. McKee. Photoionization-regulated Star Formation and the Structure of Molecular Clouds , 1989 .
[25] J. Lunine,et al. Protostars and planets III , 1993 .
[26] M. Wardle,et al. The conductivity of dense molecular gas , 1998, astro-ph/9810468.
[27] The Formation of Star Clusters I: 3D Simulations of Hydrodynamic Turbulence , 2004, astro-ph/0406122.
[28] Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present-Day Star Formation , 2007, astro-ph/0701795.
[29] C. Clarke,et al. Accretion and the stellar mass spectrum in small clusters , 1997 .
[30] S. Sridhar,et al. Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .
[31] K. Tomisaka,et al. Directions of Outflows, Disks, Magnetic Fields, and Rotation of Young Stellar Objects in Collapsing Molecular Cloud Cores , 2004, astro-ph/0408086.
[32] Star formation in unbound giant molecular clouds: the origin of OB associations? , 2005, astro-ph/0503141.
[33] Tomoaki Matsumoto,et al. Collapse and fragmentation of rotating magnetized clouds — II. Binary formation and fragmentation of first cores , 2005 .
[34] The Inability of Ambipolar Diffusion to Set a Characteristic Mass Scale in Molecular Clouds , 2005, astro-ph/0510366.
[35] Anthony Peter Whitworth,et al. Modelling ambipolar diffusion with two‐fluid smoothed particle hydrodynamics , 2004 .
[36] C. McKee,et al. Equilibrium Star Cluster Formation , 2006, astro-ph/0603278.
[37] M. Juvela,et al. The Average Magnetic Field Strength in Molecular Clouds: New Evidence of Super-Alfvénic Turbulence , 2003, astro-ph/0311349.
[38] P. Padoan,et al. The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.
[39] William H. Press,et al. Dynamic mass exchange in doubly degenerate binaries I , 1990 .
[40] I. Bonnell,et al. Star formation through gravitational collapse and competitive accretion , 2006, astro-ph/0604615.
[41] E. Ostriker,et al. Dissipation in Compressible Magnetohydrodynamic Turbulence , 1998, astro-ph/9809357.
[42] Richard M. Crutcher,et al. Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .
[43] Matthew R. Bate,et al. The thermodynamics of collapsing molecular cloud cores using smoothed particle hydrodynamics with radiative transfer , 2006 .
[44] J. Monaghan. Smoothed particle hydrodynamics , 2005 .
[45] L. Mestel. Stellar magnetism , 1999 .
[46] M. Bate,et al. Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .
[47] K. Keil,et al. Protostars and Planets V , 2007 .
[48] I. A. Bonnell,et al. Modelling accretion in protobinary systems , 1995 .
[49] Daniel J. Price,et al. The impact of magnetic fields on single and binary star formation , 2007, astro-ph/0702410.
[50] J. E. Pringle,et al. MAGNETIC RECONNECTION AND STAR FORMATION IN MOLECULAR CLOUDS , 1996 .
[51] F. Adams,et al. Star Formation in Molecular Clouds: Observation and Theory , 1987 .
[52] The Millennium Arecibo 21 Centimeter Absorption-Line Survey. IV. Statistics of Magnetic Field, Column Density, and Turbulence , 2005, astro-ph/0501482.
[53] Daniel J. Price,et al. Smoothed Particle Magnetohydrodynamics – II. Variational principles and variable smoothing-length terms , 2003, astro-ph/0310790.
[54] M. Bate. The dependence of the initial mass function on metallicity and the opacity limit for fragmentation , 2005 .
[55] Zhi-Yun Li,et al. Quiescent Cores and the Efficiency of Turbulence-accelerated, Magnetically Regulated Star Formation , 2005, astro-ph/0502130.
[56] Joseph John Monaghan,et al. SPH and Riemann Solvers , 1997 .
[57] P. Kroupa. On the variation of the initial mass function , 2000, astro-ph/0009005.
[58] R. Larson. Turbulence and star formation in molecular clouds , 1980 .
[59] Univ. of New South Wales Southern Cross University,et al. New OH Zeeman Measurements of Magnetic Field Strengths in Molecular Clouds , 2001, astro-ph/0102469.
[60] L. Spitzer,et al. Star formation in magnetic dust clouds , 1956 .
[61] Daniel J. Price,et al. magma: a three-dimensional, Lagrangian magnetohydrodynamics code for merger applications , 2007, 0705.1441.
[62] J. Devriendt,et al. Turbulent Ambipolar Diffusion: Numerical Studies in Two Dimensions , 2003, astro-ph/0309306.
[63] R. Beck,et al. Cosmic magnetic fields , 2005 .
[64] Zhi-Yun Li,et al. Cluster Formation in Protostellar Outflow-driven Turbulence , 2005, astro-ph/0512278.
[65] Daniel J. Price,et al. An energy‐conserving formalism for adaptive gravitational force softening in smoothed particle hydrodynamics and N‐body codes , 2006, astro-ph/0610872.
[66] L. Spitzer,et al. Note on the collapse of magnetic interstellar clouds. , 1976 .
[67] V. Springel,et al. Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.
[68] C. Heiles,et al. Magnetic fields in diffuse HI and molecular clouds , 2005, astro-ph/0501550.
[69] Andreas Burkert,et al. Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1998 .
[70] Star formation efficiency in driven, supercritical, turbulent clouds , 2005, astro-ph/0507637.
[71] R. Pudritz,et al. The formation of star clusters – II. 3D simulations of magnetohydrodynamic turbulence in molecular clouds , 2005, astro-ph/0508562.
[72] Ambipolar diffusion in interstellar clouds - Time-dependent solutions in one spatial dimension , 1981 .
[73] Daniel J. Price,et al. Smoothed particle magnetohydrodynamics - III. Multidimensional tests and the B = 0 constraint , 2005, astro-ph/0509083.
[74] Matthew R. Bate,et al. The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds , 2005 .
[75] Ralph E. Pudritz,et al. Outflows and Jets from Collapsing Magnetized Cloud Cores , 2005, astro-ph/0508374.