An O(nlog n)-SPACE Decision Procedure for the Propositional Dummett Logic

We present a tableau calculus for propositional Dummett logic, also known as LC (Linear Chain), where the depth of the deductions is linearly bounded by the length of the formulas to be proved. We then show that it is possible to decide propositional Dummett logic in O(nlog n)-SPACE.

[1]  Richard Statman,et al.  Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..

[2]  Roy Dyckhoff,et al.  A Deterministic Terminating Sequent Calculus for Gödel-Dummett logic , 1999, Log. J. IGPL.

[3]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[4]  Pierangelo Miglioli,et al.  Avoiding duplications in tableau systems for intuitionistic logic and Kuroda logic , 1997, Log. J. IGPL.

[5]  Jörg Hudelmaier,et al.  An O(n log n)-Space Decision Procedure for Intuitionistic Propositional Logic , 1993, J. Log. Comput..

[6]  Joachim Lambek,et al.  Intuitionistic Propositional Calculus , 1995 .

[7]  Giovanna Corsi,et al.  A Cut-Free Calculus For Dummett's LC Quantified , 1989, Math. Log. Q..

[8]  Mauro Ferrari,et al.  Duplication-Free Tableau Calculi and Related Cut-Free Sequent Calculi for the Interpolable Propositional Intermediate Logics , 1999, Log. J. IGPL.

[9]  Jiirg Hudelmaier,et al.  Bounds for cut elimination in intuitionistic propositional logic , 1992, Arch. Math. Log..

[10]  Arnon Avron,et al.  Hypersequents, logical consequence and intermediate logics for concurrency , 1991, Annals of Mathematics and Artificial Intelligence.

[11]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[12]  M. Fitting Intuitionistic logic, model theory and forcing , 1969 .

[13]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[14]  Christian G. Fermüller,et al.  Analytic Calculi for Projective Logics , 1999, TABLEAUX.

[15]  Pierangelo Miglioli,et al.  An improved refutation system for intuitionistic predicate logic , 2004, Journal of Automated Reasoning.

[16]  Michael Dummett,et al.  A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).