An O(nlog n)-SPACE Decision Procedure for the Propositional Dummett Logic
暂无分享,去创建一个
[1] Richard Statman,et al. Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..
[2] Roy Dyckhoff,et al. A Deterministic Terminating Sequent Calculus for Gödel-Dummett logic , 1999, Log. J. IGPL.
[3] Roy Dyckhoff,et al. Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.
[4] Pierangelo Miglioli,et al. Avoiding duplications in tableau systems for intuitionistic logic and Kuroda logic , 1997, Log. J. IGPL.
[5] Jörg Hudelmaier,et al. An O(n log n)-Space Decision Procedure for Intuitionistic Propositional Logic , 1993, J. Log. Comput..
[6] Joachim Lambek,et al. Intuitionistic Propositional Calculus , 1995 .
[7] Giovanna Corsi,et al. A Cut-Free Calculus For Dummett's LC Quantified , 1989, Math. Log. Q..
[8] Mauro Ferrari,et al. Duplication-Free Tableau Calculi and Related Cut-Free Sequent Calculi for the Interpolable Propositional Intermediate Logics , 1999, Log. J. IGPL.
[9] Jiirg Hudelmaier,et al. Bounds for cut elimination in intuitionistic propositional logic , 1992, Arch. Math. Log..
[10] Arnon Avron,et al. Hypersequents, logical consequence and intermediate logics for concurrency , 1991, Annals of Mathematics and Artificial Intelligence.
[11] Michael Zakharyaschev,et al. Modal Logic , 1997, Oxford logic guides.
[12] M. Fitting. Intuitionistic logic, model theory and forcing , 1969 .
[13] Richard E. Ladner,et al. The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..
[14] Christian G. Fermüller,et al. Analytic Calculi for Projective Logics , 1999, TABLEAUX.
[15] Pierangelo Miglioli,et al. An improved refutation system for intuitionistic predicate logic , 2004, Journal of Automated Reasoning.
[16] Michael Dummett,et al. A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).