BreakTrans: uncovering the genomic architecture of gene fusions

[1]  N. Agarwal,et al.  MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4 , 2012, Oncogene.

[2]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[3]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[4]  Steven J. M. Jones,et al.  BreakFusion: targeted assembly-based identification of gene fusions in whole transcriptome paired-end sequencing data , 2012, Bioinform..

[5]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[6]  S. C. Sahinalp,et al.  nFuse: Discovery of complex genomic rearrangements in cancer using high-throughput sequencing , 2012, Genome research.

[7]  C. Greenman Estimation of Rearrangement Phylogeny in Cancer , 2012 .

[8]  N. Carter,et al.  Estimation of rearrangement phylogeny for cancer genomes. , 2012, Genome research.

[9]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[10]  Joshua F. McMichael,et al.  Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing , 2011, Nature.

[11]  Lee T. Sam,et al.  Personalized Oncology Through Integrative High-Throughput Sequencing: A Pilot Study , 2011, Science Translational Medicine.

[12]  A. Chinnaiyan,et al.  Functionally Recurrent Rearrangements of the MAST Kinase and Notch Gene Families in Breast Cancer , 2011, Nature Medicine.

[13]  S. Salzberg,et al.  TopHat-Fusion: an algorithm for discovery of novel fusion transcripts , 2011, Genome Biology.

[14]  Michael C. Rusch,et al.  CREST maps somatic structural variation in cancer genomes with base-pair resolution , 2011, Nature Methods.

[15]  Faraz Hach,et al.  Comrad: detection of expressed rearrangements by integrated analysis of RNA-Seq and low coverage genome sequence data , 2011, Bioinform..

[16]  Krishna R. Kalari,et al.  A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines , 2011, Nucleic acids research.

[17]  Bradley P. Coe,et al.  Genome structural variation discovery and genotyping , 2011, Nature Reviews Genetics.

[18]  P. Hall,et al.  Transcriptional consequences of genomic structural aberrations in breast cancer. , 2011, Genome research.

[19]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[20]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[21]  J. Montero,et al.  P-Rex1 participates in Neuregulin-ErbB signal transduction and its expression correlates with patient outcome in breast cancer , 2011, Oncogene.

[22]  Joshua M. Korn,et al.  Discovery and genotyping of genome structural polymorphism by sequencing on a population scale , 2011, Nature Genetics.

[23]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[24]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[25]  Emmanouil Collab A map of human genome variation from population-scale sequencing , 2011, Nature.

[26]  E. Eichler,et al.  Limitations of next-generation genome sequence assembly , 2011, Nature Methods.

[27]  A. Børresen-Dale,et al.  Identification of fusion genes in breast cancer by paired-end RNA-sequencing , 2011, Genome Biology.

[28]  A. Klein-Szanto,et al.  Identification of the Rac-GEF P-Rex1 as an essential mediator of ErbB signaling in breast cancer. , 2010, Molecular cell.

[29]  Derek Y. Chiang,et al.  MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery , 2010, Nucleic acids research.

[30]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[31]  Mark B Gerstein,et al.  Robust-linear-model normalization to reduce technical variability in functional protein microarrays. , 2009, Journal of proteome research.

[32]  R. Wilson,et al.  BreakDancer: An algorithm for high resolution mapping of genomic structural variation , 2009, Nature Methods.

[33]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[34]  Süleyman Cenk Sahinalp,et al.  Combinatorial Algorithms for Structural Variation Detection in High Throughput Sequenced Genomes , 2009, RECOMB.

[35]  Andrew Menzies,et al.  Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. , 2007, Genome research.

[36]  B. Johansson,et al.  The impact of translocations and gene fusions on cancer causation , 2007, Nature Reviews Cancer.

[37]  John T. Wei,et al.  Integrative molecular concept modeling of prostate cancer progression , 2007, Nature Genetics.

[38]  G. Bae,et al.  Cooperation of H2O2-mediated ERK activation with Smad pathway in TGF-beta1 induction of p21WAF1/Cip1. , 2006, Cellular signalling.

[39]  Martin Strauch,et al.  Reconstructing Tumor Genome Architectures , 2022 .

[40]  David Martin,et al.  Computational Molecular Biology: An Algorithmic Approach , 2001 .

[41]  Pavel A. Pevzner,et al.  Computational molecular biology : an algorithmic approach , 2000 .

[42]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[43]  J. Spivak,et al.  Commentary on and reprint of Huang M-E, Ye Y-C, Chen S-R, Chai J-R, Lu J-X, Zhoa L, Gu L-J, Wang Z-Y, Use of all-trans-retinoic acid in the treatment of acute promyelocytic leukemia, in Blood (1988) 72:567–572 , 2000 .

[44]  Zhen-yi Wang,et al.  Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. , 1988, Haematology and blood transfusion.

[45]  J. Rowley A New Consistent Chromosomal Abnormality in Chronic Myelogenous Leukaemia identified by Quinacrine Fluorescence and Giemsa Staining , 1973, Nature.