On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating.

The response of gold nanorods to both thermal and ultrafast laser-induced heating has been examined. The thermal heating experiments show structural changes that occur on timescales ranging from hours to days. At the highest temperature examined (250 degrees C) the nanorods are transformed into spheres within an hour. On the other hand, no structural changes are observed in the laser-induced heating experiments up to temperatures of 700 +/- 50 degrees C. This is attributed to thermal diffusion in the laser experiments. Measurements of the period of the extensional mode of the nanorods using time-resolved spectroscopy show a significant softening at high pump laser powers. However, the decrease in the period is less than expected from bulk Young's modulus vs. temperature data.

[1]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[2]  Younan Xia,et al.  Metal Nanostructures with Hollow Interiors , 2003 .

[3]  P. Yang,et al.  Crystal Growth , 2004 .

[4]  Mostafa A. El-Sayed,et al.  Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods , 2001 .

[5]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[6]  Paul Mulvaney,et al.  Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. , 2003, Journal of the American Chemical Society.

[7]  M. El-Sayed,et al.  Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence , 1999 .

[8]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[9]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[10]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[11]  Benito Rodríguez-González,et al.  Optical Control and Patterning of Gold‐Nanorod–Poly(vinyl alcohol) Nanocomposite Films , 2005 .

[12]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[13]  Hristina Petrova,et al.  Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures , 2004 .

[14]  W. Fawcett,et al.  Electronic Communication in Fullerene Dimers. Electrochemical and Electron Paramagnetic Resonance Study of the Reduction of C120O , 1996 .

[15]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[16]  G. Deutscher,et al.  Surface melting enhanced by curvature effects , 1994 .

[17]  J. Güdde,et al.  Electron and lattice dynamics following optical excitation of metals , 2000 .

[18]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[19]  Gary Gibson,et al.  An introduction to seismology , 1996, Inf. Manag. Comput. Secur..

[20]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[21]  Jae Hee Song,et al.  Photochemical synthesis of gold nanorods. , 2002, Journal of the American Chemical Society.

[22]  John E. Sader,et al.  Softening of the symmetric breathing mode in gold particles by laser-induced heating , 2003 .

[23]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[24]  Orla M. Wilson,et al.  Colloidal metal particles as probes of nanoscale thermal transport in fluids , 2002 .

[25]  Binghai Yan,et al.  Comment on: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectricconstant by Link S. et al. , 2003 .

[26]  C. Mirkin,et al.  Controlling anisotropic nanoparticle growth through plasmon excitation , 2003, Nature.

[27]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[28]  M. Pileni,et al.  Optical properties of gold nanorods: DDA simulations supported by experiments. , 2005, The journal of physical chemistry. B.

[29]  Mona B. Mohamed,et al.  Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time , 2000 .

[30]  C. J. Johnson,et al.  Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis , 2002 .

[31]  T. Klar,et al.  Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering , 2003 .

[32]  M. El-Sayed,et al.  How Does a Gold Nanorod Melt , 2000 .

[33]  A. Haes,et al.  A unified view of propagating and localized surface plasmon resonance biosensors , 2004, Analytical and bioanalytical chemistry.

[34]  Encai Hao,et al.  Synthesis and Optical Properties of ``Branched'' Gold Nanocrystals , 2004 .

[35]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[36]  Mostafa A. El-Sayed,et al.  How long does it take to melt a gold nanorod?: A femtosecond pump–probe absorption spectroscopic study , 1999 .

[37]  M. El-Sayed Spectroscopic determination of the melting energy of a gold nanorod , 2001 .

[38]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[39]  M. El-Sayed,et al.  Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix , 2001 .

[40]  M. El-Sayed,et al.  Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared To Solution: The Effect of the Surrounding Medium , 2002 .

[41]  Cheng-Dah Chen,et al.  The Shape Transition of Gold Nanorods , 1999 .

[42]  Younan Xia,et al.  Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons , 2004 .

[43]  A. Henglein,et al.  Radiolytic Preparation of Ultrafine Colloidal Gold Particles in Aqueous Solution: Optical Spectrum, Controlled Growth, and Some Chemical Reactions , 1999 .

[44]  C. Voisin,et al.  Coherent acoustic mode oscillation and damping in silver nanoparticles , 1999 .

[45]  L. Liz‐Marzán,et al.  Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach , 2004 .

[46]  Younan Xia,et al.  Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. , 2004, Journal of the American Chemical Society.

[47]  M. El-Sayed,et al.  Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses , 2000 .

[48]  Chad A. Mirkin,et al.  One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes , 1998 .

[49]  Mostafa A. El-Sayed,et al.  Shape Transformation and Surface Melting of Cubic and Tetrahedral Platinum Nanocrystals , 1998 .

[50]  A. Henglein,et al.  Size dependent properties of Au particles: Coherent excitation and dephasing of acoustic vibrational modes , 1999 .

[51]  A. Henglein,et al.  Radiolytic Control of the Size of Colloidal Gold Nanoparticles , 1998 .

[52]  Paul Mulvaney,et al.  Gold nanorods: Synthesis, characterization and applications , 2005 .

[53]  P. Mulvaney,et al.  Determination of the elastic constants of gold nanorods produced by seed mediated growth , 2004 .

[54]  G. Hartland Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism , 2002 .

[55]  Hao Ming Chen,et al.  Controlling the length and shape of gold nanorods. , 2005, The journal of physical chemistry. B.

[56]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[57]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[58]  J. Sader,et al.  Coherent Excitation of Vibrational Modes in Gold Nanorods , 2002 .

[59]  L. Liz‐Marzán,et al.  Optical Properties of Thin Films of Au@SiO2 Particles , 2001 .

[60]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[61]  Gregory V. Hartland,et al.  Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size , 2002 .

[62]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .