Frictional anisotropy of oriented carbon nanotube surfaces

This report examines highly anisotropic tribological behavior of multi-walled nanotube films oriented in mutually orthogonal directions. The average values of coefficient of friction varied from extremely high values (μ=0.795) for vertically aligned nanotubes grown on rigid substrates to very low values (μ=0.090) for nanotubes dispersed flat on the same substrates. The results were insensitive to humidity, in contrast to graphite materials, and indicate that nanotubes could be utilized as both low and high frictional surfaces.

[1]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[2]  R. Ruoff,et al.  Structural properties of a carbon-nanotube crystal. , 1994, Physical review letters.

[3]  P. Bernier,et al.  Elastic and mechanical properties of carbon nanotubes , 1999 .

[4]  Jian Ping Lu,et al.  Atomic Scale Sliding and Rolling of Carbon Nanotubes , 1999 .

[5]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[6]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[7]  R. Superfine,et al.  Evidence of commensurate contact and rolling motion: AFM manipulation studies of carbon nanotubes on HOPG , 2000 .

[8]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[9]  Emmanuel Flahaut,et al.  CARBON NANOTUBE-METAL-OXIDE NANOCOMPOSITES: MICROSTRUCTURE, ELECTRICAL CONDUCTIVITY AND MECHANICAL PROPERTIES , 2000 .

[10]  P. Ajayan,et al.  Mechanical behavior of polymer and ceramic matrix nanocomposites , 2001 .

[11]  X. B. Zhang,et al.  Tribological properties of carbon-nanotube-reinforced copper composites , 2001 .

[12]  Susan B. Sinnott,et al.  Tribological properties of carbon nanotube bundles predicted from atomistic simulations , 2001 .

[13]  Yang Wang,et al.  Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes , 2002, Microscopy and Microanalysis.

[14]  Gaorong Han,et al.  Tribological Behavior of Carbon-Nanotube-Filled PTFE Composites , 2003 .

[15]  A. Buldum,et al.  Modeling and simulations of carbon nanotubes and their junctions on surfaces , 2003 .

[16]  Riichiro Saito,et al.  Characterizing carbon nanotube samples with resonance Raman scattering , 2003 .

[17]  A. Chuvilin,et al.  Catalytic filamentous carbon: Structural and textural properties , 2003 .

[18]  Yijun Liu,et al.  Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element , 2003 .

[19]  Lizhong Zhu,et al.  Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide , 2003 .

[20]  Zhu-de Xu,et al.  Tribological properties of Ni–P-multi-walled carbon nanotubes electroless composite coating , 2003 .

[21]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[22]  P. Ajayan,et al.  Sequence growth of carbon fibers and nanotube networks by CVD process , 2003 .

[23]  A. Mukherjee,et al.  Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites , 2003, Nature materials.

[24]  Bharat Bhushan,et al.  Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus , 2003 .

[25]  Weizhen Chen,et al.  Tribological application of carbon nanotubes in a metal-based composite coating and composites , 2003 .

[26]  Bingqing Wei,et al.  Assembly of Highly Organized Carbon Nanotube Architectures by Chemical Vapor Deposition , 2003 .

[27]  Q. Xue,et al.  Investigation of tribological properties of polyimide/carbon nanotube nanocomposites , 2004 .