The sequentially realizable functionals

In the previous chapter, we saw how the model PC offers a ‘maximal’ class of partial computable functionals strictly extending SF (in the sense of the poset \(\mathcal{J}(\mathbb{N}_\bot)\) of Subsection 3.6.4). In the present chapter, we show that SF can also be extended in a very different direction to yield another class SR of ‘computable’ functionals which is in some sense incompatible with PC. This class was first identified by Bucciarelli and Ehrhard [45] as the class of strongly stable functionals; later work by Ehrhard [69], van Oosten [294] and Longley [176] established the computational significance of these functionals, investigated their theory in some detail, and provided a range of alternative characterizations.

[1]  Jon G. Riecke,et al.  Fully abstract translations between functional languages , 1991, POPL '91.

[2]  Philip S. Mulry Generalized Banach-Mazur functionals in the topos of recursive sets , 1982 .

[3]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[4]  Robin Milner,et al.  Definition of standard ML , 1990 .

[5]  Thomas Ehrhard Hypercoherences: A Strongly Stable Model of Linear Logic , 1993, Math. Struct. Comput. Sci..

[6]  John R. Longley,et al.  Realizability toposes and language semantics , 1995 .

[7]  John Longley When is a functional program not a functional program? , 1999, ICFP '99.

[8]  C.-H. Luke Ong,et al.  Modified Realizability Toposes and Strong Normalization Proofs , 1993, TLCA.

[9]  Irène Guessarian,et al.  Algebraic semantics , 1981, Lecture Notes in Computer Science.

[10]  Peter W. O'Hearn,et al.  Kripke Logical Relations and PCF , 1995, Inf. Comput..

[11]  Matthias Felleisen,et al.  Observable sequentiality and full abstraction , 1992, POPL '92.

[12]  Samson Abramsky,et al.  A fully abstract game semantics for general references , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[13]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[14]  D. van Dalen,et al.  A SMALL COMPLETE CATEGORY , 1988 .

[15]  Lars Birkedal,et al.  Type theory via exact categories , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[16]  Thomas Streicher,et al.  General synthetic domain theory – a logical approach , 1997, Mathematical Structures in Computer Science.

[17]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[18]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[19]  Ralph Loader Finitary PCF is not decidable , 2001, Theor. Comput. Sci..

[20]  Antonio Bucciarelli,et al.  Sequentiality and strong stability , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[21]  J. Hyland First steps in synthetic domain theory , 1991 .

[22]  Gérard Berry,et al.  Stable Models of Typed lambda-Calculi , 1978, ICALP.

[23]  James S. Royer,et al.  On the computational complexity of Longley's H functional , 2004, Theor. Comput. Sci..

[24]  Mark B. Trakhtenbrot On Representation of Sequential and Parallel Functions , 1975, MFCS.

[25]  Matthias Felleisen,et al.  SPCF: Its Model, Calculus, and Computational Power (Preliminary Version) , 1992, REX Workshop.

[26]  John Longley Realizability Models for Sequential Computation , 1998 .

[27]  Gordon Plotkin,et al.  Logical Full Abstraction and PCF , 2000 .

[28]  Gordon D. Plotkin,et al.  Full abstraction, totality and PCF , 1999, Mathematical Structures in Computer Science.

[29]  Pierre-Louis Curien Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.

[30]  C.-H. Luke Ong,et al.  On Full Abstraction for PCF: I, II, and III , 2000, Inf. Comput..

[31]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[32]  S. C. Kleene,et al.  The Foundations of Intuitionistic Mathematics. , 1967 .

[33]  Furio Honsell,et al.  Pre-logical Relations , 1999, CSL.

[34]  Pierre-Louis Curien,et al.  Sequential Algorithms on Concrete Data Structures , 1982, Theor. Comput. Sci..

[35]  Roberto M. Amadio,et al.  Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.

[36]  David B. MacQueen,et al.  The Definition of Standard ML (Revised) , 1997 .

[37]  Thomas Ehrhard Projecting Sequential Algorithms on Strongly Stable Functions , 1996, Ann. Pure Appl. Log..

[38]  James David Laird,et al.  A semantic analysis of control , 1999 .

[39]  James Laird,et al.  Full abstraction for functional languages with control , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[40]  Thomas Ehrhard A relative PCF-definability result for strongly stable functions and some corollaries , 2000, Electron. Notes Theor. Comput. Sci..

[41]  S. C. Kleene Recursive Functionals and Quantifiers of Finite Types Revisited II , 1980 .

[42]  Jaap van Oosten The modified realizability topos , 1997 .

[43]  Radha Jagadeesan,et al.  Full Abstraction for PCF , 1994, Inf. Comput..

[44]  Thomas Ehrhard A Relative PCF-Definability Result for Strongly Stable Functions and some Corollaries , 1999, Inf. Comput..

[45]  Kurt Sieber,et al.  Relating Full Abstraction Results for Different Programming Languages , 1990, FSTTCS.

[46]  Vladimir Yu. Sazonov Degrees of Parallelism in Computations , 1976, MFCS.

[47]  Matthias Felleisen,et al.  Fully Abstract Semantics for Observably Sequential Languages , 1994, Inf. Comput..

[48]  Hanno Nickau Hereditarily Sequential Functionals , 1994, LFCS.

[49]  Pierre-Louis Curien,et al.  Categorical Combinators , 1986, Inf. Control..

[50]  Jean Vuillemin Syntaxe, sémantique et axiomatique d'un langage de programmation simple , 1975 .

[51]  Alex K. Simpson,et al.  A uniform approach to domain theory in realizability models , 1997, Mathematical Structures in Computer Science.

[52]  Dana S. Scott,et al.  A Type-Theoretical Alternative to ISWIM, CUCH, OWHY , 1993, Theor. Comput. Sci..

[53]  Gordon D. Plotkin,et al.  Concrete Domains , 1993, Theor. Comput. Sci..

[54]  Jean-Jacques Lévy,et al.  Full abstraction for sequential languages : The states of the art , 1983 .

[55]  S. Kleene,et al.  The Foundations of Intuitionistic Mathematics , 1965, The Mathematical Gazette.

[56]  Paul Taylor,et al.  The fixed point property in synthetic domain theory , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[57]  Gerald Jay Sussman,et al.  The Revised Report on SCHEME: A Dialect of LISP. , 1978 .

[58]  S. C. Kleene Recursive functionals and quantifiers of finite types revisited. V , 1991 .

[59]  Antonio Bucciarelli,et al.  Sequentiality in an Extensional Framework , 1994, Inf. Comput..

[60]  Thomas Ehrhard,et al.  On strong stability and higher-order sequentiality , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[61]  C.-H. Luke Ong,et al.  A Curry-Howard foundation for functional computation with control , 1997, POPL '97.

[62]  J. V. Oosten,et al.  A combinatory algebra for sequential functionals of finite type , 1997 .

[63]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[64]  Bernhard Reus,et al.  Program verification in synthetic domain theory , 1995 .