Prediction of perovskite structures and thermodynamic stabilities from structural factors

: Perovskite materials are regarded as “omnipotent materials” due to their excellent physical and

[1]  Hao Wang,et al.  Correlation between radiation resistance and structural factors of ABO3-type perovskites , 2023, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[2]  Feng Pan,et al.  Intercalation-driven ferroelectric-to-ferroelastic conversion in a layered hybrid perovskite crystal , 2022, Nature Communications.

[3]  Jie Lian,et al.  Chemical durability and degradation mechanisms of CsPbI3 as a potential host phase for cesium and iodine sequestration , 2022, RSC advances.

[4]  Ao Tang,et al.  Perovskite Enables High Performance Vanadium Redox Flow Battery , 2022, SSRN Electronic Journal.

[5]  R. Liu,et al.  An activity descriptor for perovskite oxides in catalysis , 2022, Chem Catalysis.

[6]  E. Barnard,et al.  Ferroelectricity in a semiconducting all-inorganic halide perovskite , 2022, Science advances.

[7]  Kota Suzuki,et al.  Fast Hydride-Ion Conduction in Perovskite Hydrides AELiH3 , 2022, ACS Applied Energy Materials.

[8]  Xueping Gao,et al.  Coupling aqueous zinc batteries and perovskite solar cells for simultaneous energy harvest, conversion and storage , 2022, Nature communications.

[9]  Jianren Zhou,et al.  Radiation-induced amorphization and recrystallization of hydroxyapatite nanoparticles , 2021, Materialia.

[10]  R. Marschall,et al.  Perovskite‐Type Oxynitride Nanofibers Performing Photocatalytic Oxygen and Hydrogen Generation , 2021, Advanced Materials Interfaces.

[11]  Z. Fang,et al.  Investigating hollandite–perovskite composite ceramics as a potential waste form for immobilization of radioactive cesium and strontium , 2021, Journal of Materials Science.

[12]  Ying Li,et al.  Proton conductivity and transport number of complex perovskite barium strontium tantalate , 2021 .

[13]  Tiju Thomas,et al.  Crystal structure classification in ABO3 perovskites via machine learning , 2020 .

[14]  Yongchang Zhu,et al.  Cesium immobilization in perovskite-type Ba1-x(La, Cs)xZrO3 ceramics by sol-gel method , 2020 .

[15]  A. Schilling,et al.  Correlation between the tolerance factor and phase transition in A4–xBxNi3O10 ( A and B=La,Pr,and Nd;x=0,1,2,and 3 ) , 2020, Physical Review Research.

[16]  A. Mclaughlin,et al.  High oxide ion and proton conductivity in a disordered hexagonal perovskite , 2020, Nature Materials.

[17]  A. Mostofi,et al.  Tolerance Factor Control of Uniaxial Negative Thermal Expansion in a Layered Perovskite , 2020 .

[18]  X. Liu,et al.  First-order phase transition and unexpected rigid rotation mode in hybrid improper ferroelectric (La, Al) co-substituted Ca3Ti2O7 ceramics , 2019 .

[19]  T. Katsumata,et al.  Synthesis of new perovskite-type oxyfluorides, BaInO2F and comparison of the structure among perovskite-type oxyfluorides , 2019, Journal of Solid State Chemistry.

[20]  L. Schmidt‐Mende,et al.  Perovskite semiconductors for next generation optoelectronic applications , 2019, APL Materials.

[21]  Song Jin,et al.  Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties , 2019, Nature Reviews Materials.

[22]  Junfa Zhu,et al.  Perovskite Oxyfluoride Electrode Enabling Direct Electrolyzing Carbon Dioxide with Excellent Electrochemical Performances , 2018, Advanced Energy Materials.

[23]  K. Fujii,et al.  Undoped Layered Perovskite Oxynitride Li2LaTa2O6N for Photocatalytic CO2 Reduction with Visible Light , 2018, Angewandte Chemie.

[24]  Christopher M Wolverton,et al.  Predictions of New ABO3 Perovskite Compounds by Combining Machine Learning and Density Functional Theory , 2018 .

[25]  Christopher J. Bartel,et al.  New tolerance factor to predict the stability of perovskite oxides and halides , 2018, Science Advances.

[26]  Jonathan Hwang,et al.  Perovskites in catalysis and electrocatalysis , 2017, Science.

[27]  W. Yin,et al.  Thermodynamic Stability Trend of Cubic Perovskites. , 2017, Journal of the American Chemical Society.

[28]  M. Wark,et al.  Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. , 2017, Dalton transactions.

[29]  Gongpin Liu,et al.  Unprecedented Perovskite Oxyfluoride Membranes with High‐Efficiency Oxygen Ion Transport Paths for Low‐Temperature Oxygen Permeation , 2016, Advanced materials.

[30]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[31]  R. Palgrave,et al.  On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system , 2016, Chemical science.

[32]  A. Reshak NaMgH3 a perovskite-type hydride as advanced hydrogen storage systems: Electronic structure features , 2015 .

[33]  T Lookman,et al.  Classification of ABO3 perovskite solids: a machine learning study. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[34]  P. Lightfoot,et al.  Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. , 2015, Dalton transactions.

[35]  H. Hagemann,et al.  Structure and properties of complex hydride perovskite materials , 2014, Nature Communications.

[36]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[37]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[38]  Na Li,et al.  Structural stability and formability of ABO3-type perovskite compounds. , 2007, Acta crystallographica. Section B, Structural science.

[39]  P. Tsiotras,et al.  Theory and experiments , 2008 .

[40]  R. Ewing,et al.  Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation. , 2006, The journal of physical chemistry. B.

[41]  D. Noréus,et al.  Hydrides with the perovskite structure : General bonding and stability considerations and the new representative CaNiH3 , 2005 .

[42]  Anke Weidenkaff,et al.  Tantalum and niobium perovskite oxynitrides: Synthesis and analysis of the thermal behaviour , 2005 .

[43]  C. Jia,et al.  Immobilization of Radioactive Wastes into Perovskite Synrock by the SHS Method , 2005 .

[44]  Chonghe Li,et al.  Formability of ABO3 perovskites , 2004 .

[45]  M. G. Rozova,et al.  Synthesis and crystal structure of the Sr2MnGa(O,F)6 oxyfluorides , 2004 .

[46]  J. Rooke,et al.  Synthesis and Characterisation of Perovskite-Type Oxynitrides , 2003 .

[47]  P M Woodward,et al.  Prediction of the crystal structures of perovskites using the software program SPuDS. , 2001, Acta crystallographica. Section B, Structural science.

[48]  Steven J. Zinkle,et al.  Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium , 1998 .

[49]  N. Ramadass ABO3-type oxides—Their structure and properties—A bird's eye view , 1978 .

[50]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[51]  D. R.,et al.  Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides , 2001 .