An Efficient General Purpose Elliptic Curve Cryptography Module for Ubiquitous Sensor Networks

In this article we present the fastest known implementation of a modular multiplication for a 160-bit standard compliant elliptic curve (secp160r1) for 8-bit micro-controller which are typically used in ubiquitous sensor networks (USN). The major part (77%) of the processing time for an elliptic curve operation such as ECDSA or EC Diffie-Hellman is spent on modular multiplication. We present an optimized arithmetic algorithm which significantly speeds up ECC schemes. The reduced processing time also yields a significantly lower energy consumption of ECC schemes. We show that a 160-bit modular multiplication can be performed in 0.37 ms on an 8-bit AVR processor clocked at 8 MHz. This brings the vision of asymmetric cryptography in the field of USNs with all its benefits for key-distribution and authentication a step closer to reality.