Neural agrin: a synaptic stabiliser.

[1]  K. Gaus,et al.  Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes Published, JLR Papers in Press, July 1, 2006. , 2006, Journal of Lipid Research.

[2]  C. Alberini,et al.  MuSK Expressed in the Brain Mediates Cholinergic Responses, Synaptic Plasticity, and Memory Formation , 2006, The Journal of Neuroscience.

[3]  Heinrich Sticht,et al.  Casein kinase 2-dependent serine phosphorylation of MuSK regulates acetylcholine receptor aggregation at the neuromuscular junction. , 2006, Genes & development.

[4]  T. Akiyama,et al.  The Muscle Protein Dok-7 Is Essential for Neuromuscular Synaptogenesis , 2006, Science.

[5]  L. Mei,et al.  Lipid Rafts Serve as a Signaling Platform for Nicotinic Acetylcholine Receptor Clustering , 2006, The Journal of Neuroscience.

[6]  A. Vincent,et al.  Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. , 2005, Brain : a journal of neurology.

[7]  O. Gervásio,et al.  Increased ratio of rapsyn to ACh receptor stabilizes postsynaptic receptors at the mouse neuromuscular synapse , 2005, The Journal of physiology.

[8]  Guoping Feng,et al.  Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction , 2003, Nature Neuroscience.

[9]  E. Lacazette,et al.  A novel pathway for MuSK to induce key genes in neuromuscular synapse formation , 2003, The Journal of cell biology.

[10]  C. Fuhrer,et al.  Agrin Regulates Rapsyn Interaction with Surface Acetylcholine Receptors, and This Underlies Cytoskeletal Anchoring and Clustering* , 2003, The Journal of Biological Chemistry.

[11]  L. Mei,et al.  Regulation of AChR Clustering by Dishevelled Interacting with MuSK and PAK1 , 2002, Neuron.

[12]  J. Sanes,et al.  Induction, assembly, maturation and maintenance of a postsynaptic apparatus , 2001, Nature reviews. Neuroscience.

[13]  J. Duncan,et al.  An adaptive coding model of neural function in prefrontal cortex , 2001, Nature Reviews Neuroscience.

[14]  R. Kammerer,et al.  The laminin-binding domain of agrin is structurally related to N-TIMP-1 , 2001, Nature Structural Biology.

[15]  C. Fuhrer,et al.  Src, Fyn, and Yes Are Not Required for Neuromuscular Synapse Formation But Are Necessary for Stabilization of Agrin-Induced Clusters of Acetylcholine Receptors , 2001, The Journal of Neuroscience.

[16]  M. Ferns,et al.  Agrin-Induced Phosphorylation of the Acetylcholine Receptor Regulates Cytoskeletal Anchoring and Clustering , 2001, The Journal of cell biology.

[17]  J. Sanes,et al.  Distinct Domains of Musk Mediate Its Abilities to Induce and to Associate with Postsynaptic Specializations , 1999, The Journal of cell biology.

[18]  J. Sanes,et al.  Defective Neuromuscular Synaptogenesis in Agrin-Deficient Mutant Mice , 1996, Cell.

[19]  J. Sanes,et al.  Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice , 1995, Nature.

[20]  R. Scheller,et al.  Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. , 1994, The EMBO journal.

[21]  R. Scheller,et al.  The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans , 1993, Neuron.

[22]  U. J. McMahan,et al.  Synthesis and transport of agrin-like molecules in motor neurons. , 1990, The Journal of experimental biology.

[23]  M. Smith,et al.  Identification of agrin, a synaptic organizing protein from Torpedo electric organ , 1987, The Journal of cell biology.

[24]  P. Distefano,et al.  The receptor tyrosine kinase MuSK is required for neuromuscular junction formation and is a functional receptor for agrin. , 1996, Cold Spring Harbor symposia on quantitative biology.