Photovoltage Tomography in Polycrystalline Solar Cells

To date, the performance of all polycrystalline photovoltaics is limited by their open-circuit voltage (Voc), an indicator of charge carrier recombination within the semiconductor layer. Thus, the successful implementation of high-efficiency and low-cost solar cells requires the control and suppression of nonradiative recombination centers within the material. Here, we spectrally and spatially resolve the photovoltage of polycrystalline thin-film Cu(In,Ga)Se2 (CIGS) solar cells. Micro-Raman and energy-dispersive X-ray spectroscopy maps obtained on the same grains showed that the chemical composition of the CIGS layer is very uniform. Surprisingly, we observed concurrent spatial variations in the photovoltage generated across the device, strongly indicating that structural properties are likely responsible for the nonuniform mesoscale behavior reported here. We build a tomography of the photovoltage response at 1 sun global illumination, mimicking the operation conditions of solar cells. Furthermore, we sp...

[1]  W. Jaegermann,et al.  Physical characterization of thin‐film solar cells , 2004 .

[2]  D. Josell,et al.  Windowless CdSe/CdTe solar cells with differentiated back contacts: J-V, EQE, and photocurrent mapping. , 2014, ACS applied materials & interfaces.

[3]  Thomas Kirchartz,et al.  Advanced Characterization Techniques for Thin Film Solar Cells , 2016 .

[4]  Jasbinder S. Sanghera,et al.  Nanoimaging of Open‐Circuit Voltage in Photovoltaic Devices , 2015 .

[5]  A. Cuevas,et al.  The combined effect of non-uniform illumination and series resistance on the open-circuit voltage of solar cells , 1984 .

[6]  Maxim Abashin,et al.  Nanoscale imaging of photocurrent and efficiency in CdTe solar cells. , 2014, ACS nano.

[7]  H. Guthrey,et al.  Recombination by grain-boundary type in CdTe , 2015 .

[8]  A. Rockett,et al.  Direct observation of electrical properties of grain boundaries in sputter-deposited CdTe using scan-probe microwave reflectivity based capacitance measurements , 2015 .

[9]  J. Cruz-Campa,et al.  Mapping photovoltaic performance with nanoscale resolution , 2016 .

[10]  B. Hamadani,et al.  Local electrical characterization of cadmium telluride solar cells using low-energy electron beam , 2013 .

[11]  Mowafak Al-Jassim,et al.  Grain-boundary-enhanced carrier collection in CdTe solar cells. , 2014, Physical review letters.

[12]  B. Lai,et al.  Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy. , 2015, The Review of scientific instruments.

[13]  Thomas Unold,et al.  Spatially resolved photoluminescence measurements on Cu(In, Ga)Se2 thin films , 2002 .

[14]  J. S. Sanghera,et al.  Characterization of Cu(In, Ga)Se2 thin films and devices sputtered from a single target without additional selenization , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[15]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[16]  Q. Ramasse,et al.  Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se2 thin films for solar cells – a review , 2016 .

[17]  S. O'Uchi,et al.  Raman spectra of ordered vacancy compounds in the Cu-In-Se system , 1997 .

[18]  G. H. Bauer,et al.  Quasi-Fermi level splitting and identification of recombination losses from room temperature luminescence in Cu(In1−xGax)Se2 thin films versus optical band gap , 2005 .

[19]  A. Mascarenhas,et al.  Measuring long-range carrier diffusion across multiple grains in polycrystalline semiconductors by photoluminescence imaging , 2013, Nature Communications.

[20]  Jonathan J. Wierer,et al.  Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy. , 2013, Nano letters.

[21]  Rujun Sun,et al.  Cu(In,Ga)Se2 solar cell with 16.7% active‐area efficiency achieved by sputtering from a quaternary target , 2015 .

[22]  K. Ramanathan,et al.  Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se2 solar cells , 2014 .

[23]  D. Ginger,et al.  Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy. , 2007, Nano letters.

[24]  U. Rau,et al.  Nanoscale observation of waveguide modes enhancing the efficiency of solar cells. , 2014, Nano letters.

[25]  Juan Bisquert,et al.  Assessing Possibilities and Limits for Solar Cells , 2011 .

[26]  Andreas Bauer,et al.  Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7% , 2015 .

[27]  Alessandro Fantoni,et al.  A two-dimensional numerical simulation of a non-uniformly illuminated amorphous silicon solar cell , 1996 .

[28]  Yang Yang,et al.  Spatial element distribution control in a fully solution-processed nanocrystals-based 8.6% Cu2ZnSn(S,Se)4 device. , 2014, ACS nano.

[29]  R. Scheer,et al.  Grain-boundary types in chalcopyrite-type thin films and their correlations with film texture and electrical properties , 2009 .

[30]  M. Abashin,et al.  Mapping the Local Photoelectronic Properties of Polycrystalline Solar Cells Through High Resolution Laser-Beam-Induced Current Microscopy , 2014, IEEE Journal of Photovoltaics.

[31]  R. Scheer,et al.  Influence of grain boundaries on current collection in Cu(In,Ga)Se2 thin-film solar cells , 2009 .

[32]  Q. Ramasse,et al.  Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells , 2016 .

[33]  M. Powalla,et al.  Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents , 2008 .

[34]  G. H. Bauer,et al.  Photoluminescence studies of polycrystalline Cu(In,Ga)Se2: Lateral inhomogeneities beyond Abbe's diffraction limit , 2015 .

[35]  Martin A. Green,et al.  Commercial progress and challenges for photovoltaics , 2016, Nature Energy.

[36]  Matthew G. Panthani,et al.  Mapping spatial heterogeneity in Cu(In(1-x)Ga(x))Se2 nanocrystal-based photovoltaics with scanning photocurrent and fluorescence microscopy. , 2010, Small.

[37]  Lih-Juann Chen,et al.  Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell. , 2011, Nano letters.

[38]  Spatial Inhomogeneities in Cu(In,Ga)Se2 Solar Cells Analyzed by Electron Beam Induced Voltage Measurements , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[39]  G. H. Bauer,et al.  Spectrally resolved photoluminescence studies on Cu(In,Ga)Se2 solar cells with lateral submicron resolution , 2007 .

[40]  Martin A. Green,et al.  Solar cell efficiency tables (version 48) , 2016 .

[41]  I. Balberg,et al.  Current routes in polycrystalline CuInSe2 and Cu(In,Ga)Se2 films , 2007 .

[42]  Uwe Rau,et al.  Grain boundaries in Cu(In, Ga)(Se, S)2 thin-film solar cells , 2009 .

[43]  J. Holdsworth,et al.  Direct Photocurrent Mapping of Organic Solar Cells Using a Near-Field Scanning Optical Microscope , 2004 .

[44]  Samson A Jenekhe,et al.  The role of mesoscopic PCBM crystallites in solvent vapor annealed copolymer solar cells. , 2009, ACS nano.

[45]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[46]  Wyatt K. Metzger,et al.  Grain-boundary recombination in Cu(In,Ga)Se2 solar cells , 2005 .

[47]  N. Barreau,et al.  Revisiting the interpretation of biased luminescence: Effects on Cu(In,Ga)Se2 photovoltaic heterostructures , 2014 .

[48]  Neelkanth G. Dhere,et al.  Scale-up issues of CIGS thin film PV modules , 2011 .

[49]  Sumei Huang,et al.  Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target , 2011 .

[50]  Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films. , 2013, ACS applied materials & interfaces.

[51]  N. Gorji Degradation sources of CdTe thin film PV: CdCl2 residue and shunting pinholes , 2014 .

[52]  G. H. Bauer,et al.  Subwavelength inhomogeneities in Cu(In,Ga)Se2 thin films revealed by near‐field scanning optical microscopy , 2009 .

[53]  D. Abou‐Ras,et al.  Advanced Characterization Techniques for Thin Film Solar Cells: RAU:SOLARCELLS CHARACT. O-BK , 2011 .

[54]  W. Richter,et al.  Micro-Raman Study of Orientation Effects of CuxSe-Crystallites on Cu-rich CuGaSe2 Thin Films , 2004 .

[55]  M. Lux‐Steiner,et al.  Comparative study of Cu(In,Ga)Se2/CdS and Cu(In,Ga)Se2/In2S3 systems by surface photovoltage techniques , 2013 .