The no-slip boundary condition: a review

2 History of the no-slip condition 2 2.1 The previous centuries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Traditional situations where slip occurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.4 Newtonian liquids: no-slip? slip? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

[1]  Howard A. Stone,et al.  Introduction to Fluid Dynamics for Microfluidic Flows , 2007 .

[2]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[3]  N. Ishida,et al.  Interaction forces between hydrophobic surfaces evaluated by AFM - The role of nanoscopic bubbles in the interactions , 2005 .

[4]  Blair Perot,et al.  Laminar drag reduction in microchannels using ultrahydrophobic surfaces , 2004 .

[5]  Alex Roxin,et al.  Mechanisms for liquid slip at solid surfaces. , 2004, Physical review letters.

[6]  S. Biggs,et al.  The effect of surfactant adsorption on liquid boundary slippage , 2004 .

[7]  John Kim,et al.  Effects of hydrophobic surface on skin-friction drag , 2004 .

[8]  J. Ruberti,et al.  Rapid cryofixation/freeze fracture for the study of nanobubbles at solid–liquid interfaces , 2004 .

[9]  B. Klösgen,et al.  Nanobubbles give evidence of incomplete wetting at a hydrophobic interface. , 2004, Journal of colloid and interface science.

[10]  F. Rieutord,et al.  Dipole-dependent slip of Newtonian liquids at smooth solid hydrophobic surfaces. , 2004, Physical review letters.

[11]  C. Meinhart,et al.  A generating mechanism for apparent fluid slip in hydrophobic microchannels , 2004 .

[12]  Jun Hu,et al.  Degassing and temperature effects on the formation of nanobubbles at the mica/water interface. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[13]  Phil Attard,et al.  Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[14]  Bo N. J. Persson,et al.  Squeeze-out and wear: Fundamental principles and applications , 2004 .

[15]  E. Lauga Apparent slip due to the motion of suspended particles in flows of electrolyte solutions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[16]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[17]  M. Brenner,et al.  Dynamic mechanisms for apparent slip on hydrophobic surfaces. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  P. Cheng,et al.  Effects of interface wettability on microscale flow by molecular dynamics simulation , 2004 .

[19]  X. Li-fe Nanobubbles at the Solid/Water Interface , 2004 .

[20]  Morton M. Denn,et al.  EXTRUSION INSTABILITIES AND WALL SLIP , 2003 .

[21]  A. Boisen,et al.  Nanobubble trouble on gold surfaces , 2003 .

[22]  C. Neto,et al.  Evidence of shear-dependent boundary slip in newtonian liquids , 2003, The European physical journal. E, Soft matter.

[23]  G. Koper,et al.  Stick-slip transition at the nanometer scale. , 2003, Physical review letters.

[24]  K. Breuer,et al.  APPARENT SLIP FLOWS IN HYDROPHILIC AND HYDROPHOBIC MICROCHANNELS , 2003 .

[25]  Howard A. Stone,et al.  Effective slip in pressure-driven Stokes flow , 2003, Journal of Fluid Mechanics.

[26]  B. Dünweg,et al.  Boundary slip as a result of a prewetting transition , 2003, cond-mat/0306345.

[27]  J. Rädler,et al.  Flow profile near a wall measured by double-focus fluorescence cross-correlation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Hugh Spikes,et al.  Equation for Slip of Simple Liquids at Smooth Solid Surfaces , 2003 .

[29]  Hans-Jürgen Butt,et al.  Surface roughness and hydrodynamic boundary slip of a newtonian fluid in a completely wetting system. , 2003, Physical review letters.

[30]  Juan Casado-Díaz,et al.  Why viscous fluids adhere to rugose walls: A mathematical explanation , 2003 .

[31]  J. Freund The atomic detail of a wetting/de-wetting flow , 2003 .

[32]  Steve Granick,et al.  Slippery questions about complex fluids flowing past solids , 2003, Nature materials.

[33]  J. Barrat,et al.  Low-friction flows of liquid at nanopatterned interfaces , 2003, Nature materials.

[34]  C. Wang Flow over a surface with parallel grooves , 2003 .

[35]  Liliane Léger,et al.  Flow with slip at the wall: from simple to complex fluids , 2003 .

[36]  Tomohiro Hayashi,et al.  Interaction of water with self-assembled monolayers: Neutron reflectivity measurements of the water density in the interface region , 2003 .

[37]  I. Ponomarev,et al.  Surface roughness and effective stick-slip motion. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Steve Granick,et al.  No-slip boundary condition switches to partial slip when fluid contains surfactant , 2002 .

[39]  Volker Franz,et al.  Confined liquid: Simultaneous observation of a molecularly layered structure and hydrodynamic slip , 2002 .

[40]  Phil Attard,et al.  Nanobubbles: the big picture , 2002 .

[41]  Nicholas Quirke,et al.  FLUID FLOW IN NANOPORES: ACCURATE BOUNDARY CONDITIONS FOR CARBON NANOTUBES , 2002 .

[42]  U. Raviv,et al.  Viscosity of ultra-thin water films confined between hydrophobic or hydrophilic surfaces , 2002 .

[43]  J. Baudry,et al.  Nanorheology: An investigation of the boundary condition at hydrophobic and hydrophilic interfaces , 2002, The European physical journal. E, Soft matter.

[44]  Apparent Slip of Newtonian Fluids Past Adsorbed Polymer Layers , 2002 .

[45]  Guanglai Li,et al.  Studies of nanobubbles produced at liquid/solid interfaces , 2002 .

[46]  N. Giordano,et al.  Fluid flow through nanometer-scale channels. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  S. Granick,et al.  Limits of the hydrodynamic no-slip boundary condition. , 2002, Physical review letters.

[48]  J. Ralston,et al.  Electrokinetic properties of methylated quartz capillaries. , 2002, Advances in colloid and interface science.

[49]  C. Meinhart,et al.  Apparent fluid slip at hydrophobic microchannel walls , 2002 .

[50]  Nhan Phan-Thien,et al.  Molecular dynamics simulation of a liquid in a complex nano channel flow , 2002 .

[51]  Hans-Jürgen Butt,et al.  Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects. , 2002, Physical review letters.

[52]  Phil Attard,et al.  Atomic Force Microscope Images of Nanobubbles on a Hydrophobic Surface and Corresponding Force-Separation Data , 2002 .

[53]  James W. G. Tyrrell,et al.  Images of nanobubbles on hydrophobic surfaces and their interactions. , 2001, Physical review letters.

[54]  Uri Raviv,et al.  Fluidity of water confined to subnanometre films , 2001, Nature.

[55]  S. Granick,et al.  Rate-dependent slip of Newtonian liquid at smooth surfaces. , 2001, Physical review letters.

[56]  J. Baudry,et al.  Experimental Evidence for a Large Slip Effect at a Nonwetting Fluid−Solid Interface , 2001 .

[57]  D. Williams,et al.  Shear-dependent boundary slip in an aqueous Newtonian liquid. , 2001, Physical review letters.

[58]  H. Butt,et al.  Forces between polystyrene surfaces in water-electrolyte solutions: Long-range attraction of two types? , 2001 .

[59]  J. Banavar,et al.  Boundary conditions at a fluid-solid interface. , 2000, Physical review letters.

[60]  Wave Phenomena at Liquid-solid Interfaces , 2001 .

[61]  L. Léger,et al.  Direct experimental evidence of slip in hexadecane: solid interfaces , 2000, Physical review letters.

[62]  N. Ishida,et al.  Nano Bubbles on a Hydrophobic Surface in Water Observed by Tapping-Mode Atomic Force Microscopy , 2000 .

[63]  H. Brenner,et al.  Molecular wall effects: are conditions at a boundary "boundary conditions"? , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[64]  H. Butt,et al.  Interaction Forces between Hydrophobic Surfaces. Attractive Jump as an Indication of Formation of "Stable" Submicrocavities , 2000 .

[65]  Mark O. Robbins,et al.  Computer Simulations of Friction, Lubrication and Wear , 2000, cond-mat/0001056.

[66]  Atkinson,et al.  Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of couette shear flow between two sinusoidal walls , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  Liliane Léger,et al.  Friction and slip of a simple liquid at a solid surface , 1999 .

[68]  Lydéric Bocquet,et al.  Large Slip Effect at a Nonwetting Fluid-Solid Interface , 1999 .

[69]  D. Chandler,et al.  Hydrophobicity at Small and Large Length Scales , 1999 .

[70]  O. Vinogradova Slippage of water over hydrophobic surfaces , 1999 .

[71]  Boehnke,et al.  Partial Air Wetting on Solvophobic Surfaces in Polar Liquids. , 1999, Journal of colloid and interface science.

[72]  M. Gad-el-Hak The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture , 1999 .

[73]  Hiroshi Udagawa,et al.  Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall , 1999, Journal of Fluid Mechanics.

[74]  V. Sobolev,et al.  Slippage of the aqueous solutions of cetyltrimethylammonium bromide during flow in thin quartz capillaries , 1999 .

[75]  J. Bico,et al.  Pearl drops , 1999 .

[76]  Liliane Léger,et al.  Surface-Anchored Polymer Chains: Their Role in Adhesion and Friction , 1999 .

[77]  Shi‐Qing Wang,et al.  Molecular Transitions and Dynamics at Polymer / Wall Interfaces: Origins of Flow Instabilities and Wall Slip , 1999 .

[78]  J. Barrat,et al.  Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface , 1998, cond-mat/9812218.

[79]  E. Kumacheva,et al.  Simple liquids confined to molecularly thin layers. II. Shear and frictional behavior of solidified films , 1998 .

[80]  E. Kumacheva,et al.  Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions , 1998 .

[81]  O. Vinogradova Implications of Hydrophobic Slippage for the Dynamic Measurements of Hydrophobic Forces , 1998 .

[82]  Keizo Watanabe,et al.  Drag Reduction for a Rotating Disk with Highly Water-Repellent Wall , 1998 .

[83]  Jan Christer Eriksson,et al.  The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction , 1997 .

[84]  S. Troian,et al.  A general boundary condition for liquid flow at solid surfaces , 1997, Nature.

[85]  Tomiichi Hasegawa,et al.  Anomaly of excess pressure drops of the flow through very small orifices , 1997 .

[86]  Hiroshi Mizunuma,et al.  Slip of Newtonian Fluids at Solid Boundary , 1997 .

[87]  P. Pedley,et al.  An Introduction to Fluid Dynamics , 1968 .

[88]  O. Vinogradova Hydrodynamic Interaction of Curved Bodies Allowing Slip on Their Surfaces , 1996 .

[89]  Olga I. Vinogradova,et al.  Possible implications of hydrophobic slippage on the dynamic measurements of hydrophobic forces , 1996 .

[90]  J. Israelachvili,et al.  Very low viscosity at the solid–liquid interface induced by adsorbed C60 monolayers , 1996, Nature.

[91]  Andrea Prosperetti,et al.  Effective boundary conditions for Stokes flow over a rough surface , 1996, Journal of Fluid Mechanics.

[92]  Banavar,et al.  Stokes drag and lubrication flows: A molecular dynamics study. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[93]  O. Vinogradova,et al.  Flow of a liquid in a nonuniformly hydrophobized capillary , 1996 .

[94]  Inn,et al.  Hydrodynamic slip: Polymer adsorption and desorption at melt/solid interfaces. , 1996, Physical review letters.

[95]  Joel Koplik,et al.  Continuum Deductions from Molecular Hydrodynamics , 1997 .

[96]  J. Banavar,et al.  Corner flow in the sliding plate problem , 1995 .

[97]  A. Prosperetti,et al.  Effective boundary conditions for the Laplace equation with a rough boundary , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[98]  E. Tuck,et al.  A laminar roughness boundary condition , 1995, Journal of Fluid Mechanics.

[99]  E. Kumacheva,et al.  Confinement-Induced Phase Transitions in Simple Liquids , 1995, Science.

[100]  Olga I. Vinogradova,et al.  Drainage of a Thin Liquid Film Confined between Hydrophobic Surfaces , 1995 .

[101]  Tomohiro Onda,et al.  Super-Water-Repellent Fractal Surfaces , 1995 .

[102]  I. Bitsanis,et al.  Pressure-Driven Flow Experiments in Molecularly Narrow, Straight Pores of Molecular Dimension in Mica , 1995 .

[103]  Michael J. Miksis,et al.  Slip over rough and coated surfaces , 1994, Journal of Fluid Mechanics.

[104]  H. Brenner,et al.  On the Stokes-Einstein Model of Surface Diffusion along Solid Surfaces: Slip Boundary Conditions , 1994 .

[105]  L. Bocquet,et al.  Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[106]  Bocquet,et al.  Hydrodynamic boundary conditions and correlation functions of confined fluids. , 1993, Physical review letters.

[107]  J. Georges,et al.  Drainage of thin liquid films between relatively smooth surfaces , 1993 .

[108]  K. Migler,et al.  Slip transition of a polymer melt under shear stress. , 1993, Physical review letters.

[109]  Sun,et al.  Molecular dynamics study of flow at a fluid-wall interface. , 1992, Physical review letters.

[110]  P. Gennes,et al.  Shear-dependent slippage at a polymer/solid interface , 1992 .

[111]  E. Ruckenstein,et al.  A possible hydrodynamic origin of the forces of hydrophobic attraction , 1991 .

[112]  S. Granick,et al.  Motions and Relaxations of Confined Liquids , 1991, Science.

[113]  D. M. Bushnell,et al.  DRAG REDUCTION IN NATURE , 1991 .

[114]  Patricia McGuiggan,et al.  Liquid to solidlike transitions of molecularly thin films under shear , 1990 .

[115]  Robbins,et al.  Shear flow near solids: Epitaxial order and flow boundary conditions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[116]  Liu,et al.  Boundary condition for fluid flow: Curved or rough surfaces. , 1990, Physical review letters.

[117]  T. Blake,et al.  Slip between a liquid and a solid: D.M. Tolstoi's (1952) theory reconsidered , 1990 .

[118]  D. A. Saville,et al.  Colloidal Dispersions: Equilibrium phase behavior , 1989 .

[119]  Jay N. Zemel,et al.  Liquid Transport In Micron And Submicron Channels , 1989, Optics & Photonics.

[120]  W. Haller,et al.  Surface forces and viscosity of water measured between silica sheets , 1989 .

[121]  Robbins,et al.  Simulations of contact-line motion: Slip and the dynamic contact angle. , 1989, Physical review letters.

[122]  Heinbuch,et al.  Liquid flow in pores: Slip, no-slip, or multilayer sticking. , 1989, Physical review. A, General physics.

[123]  Joel Koplik,et al.  Molecular dynamics of fluid flow at solid surfaces , 1989 .

[124]  E. Muntz,et al.  Rarefied Gas Dynamics , 1989 .

[125]  J. Israelachvili,et al.  Dynamic Properties of Molecularly Thin Liquid Films , 1988, Science.

[126]  Banavar,et al.  Molecular dynamics of Poiseuille flow and moving contact lines. , 1988, Physical review letters.

[127]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[128]  Kalvis M. Jansons,et al.  Determination of the macroscopic (partial) slip boundary condition for a viscous flow over a randomly rough surface with a perfect slip microscopic boundary condition , 1988 .

[129]  W. R. Schowalter The behavior of complex fluids at solid boundaries , 1988 .

[130]  K. Jansons Moving contact lines at non-zero capillary number , 1986, Journal of Fluid Mechanics.

[131]  Jacob N. Israelachvili,et al.  Measurement of the viscosity of liquids in very thin films , 1986 .

[132]  Wentzell Ra Van der Waals stabilization of bubbles. , 1986 .

[133]  Wentzell Van der Waals stabilization of bubbles. , 1986, Physical review letters.

[134]  Gerber,et al.  Atomic force microscope. , 1986, Physical review letters.

[135]  P. Gennes Wetting: statics and dynamics , 1985 .

[136]  Derek Y. C. Chan,et al.  The drainage of thin liquid films between solid surfaces , 1985 .

[137]  J. Israelachvili Intermolecular and surface forces , 1985 .

[138]  V. D. Sobolev,et al.  Slippage of liquids over lyophobic solid surfaces , 1984 .

[139]  Eli Ruckenstein,et al.  On the no-slip boundary condition of hydrodynamics , 1983 .

[140]  A. M. Kraynik,et al.  Slip at the Wall and Extrudate Roughness with Aqueous Solutions of Polyvinyl Alcohol and Sodium Borate , 1981 .

[141]  R. J. Hunter Zeta potential in colloid science : principles and applications , 1981 .

[142]  Donald A. McQuarrie,et al.  Electrokinetic flow in a narrow cylindrical capillary , 1980 .

[143]  E. B. Dussan,et al.  LIQUIDS ON SOLID SURFACES: STATIC AND DYNAMIC CONTACT LINES , 1979 .

[144]  D. v.,et al.  The moving contact line: the slip boundary condition , 1976, Journal of Fluid Mechanics.

[145]  L. M. Hocking A moving fluid interface on a rough surface , 1976, Journal of Fluid Mechanics.

[146]  S. Richardson,et al.  On the no-slip boundary condition , 1973, Journal of Fluid Mechanics.

[147]  L. M. Hocking The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres , 1973 .

[148]  David Tabor,et al.  The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[149]  J. R. Philip Integral properties of flows satisfying mixed no-slip and no-shear conditions , 1972 .

[150]  J. R. Philip Flows satisfying mixed no-slip and no-shear conditions , 1972 .

[151]  John L. Anderson,et al.  Ionic mobility in microcapillaries. A test for anomalous water structures , 1972 .

[152]  Geoffrey Ingram Taylor,et al.  A model for the boundary condition of a porous material. Part 1 , 1971, Journal of Fluid Mechanics.

[153]  S. Richardson,et al.  A model for the boundary condition of a porous material. Part 2 , 1971, Journal of Fluid Mechanics.

[154]  L. Scriven,et al.  Hydrodynamic Model of Steady Movement of a Solid / Liquid / Fluid Contact Line , 1971 .

[155]  J. F. Nye,et al.  Glacier sliding without cavitation in a linear viscous approximation , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[156]  David Tabor,et al.  The direct measurement of normal and retarded van der Waals forces , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[157]  John Frederick Nye,et al.  A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[158]  S. Goldstein,et al.  Fluid Mechanics in the First Half of this Century , 1969 .

[159]  A. B. Metzner Viscous Heating in Plane and Circular Flow between Moving Surfaces , 1968 .

[160]  R. G. Cox,et al.  Slow viscous motion of a sphere parallel to a plane wall—I Motion through a quiescent fluid , 1967 .

[161]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[162]  D. Burgreen,et al.  Electrokinetic Flow in Ultrafine Capillary Slits1 , 1964 .

[163]  Erhard Schnell,et al.  Slippage of Water over Nonwettable Surfaces , 1956 .

[164]  J. Hirschfelder Kinetic Theory of Liquids. , 1956 .

[165]  M. S. Plesset,et al.  On the stability of gas bubbles in liquid-gas solutions , 1950 .

[166]  J. Frankel Kinetic theory of liquids , 1946 .

[167]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[168]  O. Reynolds I. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil , 1886, Proceedings of the Royal Society of London.

[169]  James Clerk Maxwell,et al.  III. On stresses in rarefied gases arising from inequalities of temperature , 1878, Proceedings of the Royal Society of London.