Column generation and branch-and-price with interior point methods

Column generation and branch-and-price methods are currently essential tools for solving many classes of integer programming and combinatorial optimization problems. This paper addresses how to improve the performance of these methodologies by using the interior point algorithm. The purpose is to summarize the main developments proposed in the thesis “Theoretical and computational issues for improving the performance of linear optimization methods” which has been awarded with the “Doctoral Prize Odelar Leite Linhares” in 2014. As the com- putational experiments indicates, the interior point method is more than an alternative to the simplex method. Indeed, it offers advantageous features which can be used to stabilize the column generation technique and improve the overall performance of the branch-and-price method.

[1]  Jean-Philippe Vial,et al.  Convex nondifferentiable optimization: A survey focused on the analytic center cutting plane method , 2002, Optim. Methods Softw..

[2]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[3]  Lester Randolph Ford,et al.  A Suggested Computation for Maximal Multi-Commodity Network Flows , 2004, Manag. Sci..

[4]  Michael J. Todd,et al.  Solving combinatorial optimization problems using Karmarkar's algorithm , 1992, Math. Program..

[5]  Jacques Desrosiers,et al.  On the choice of explicit stabilizing terms in column generation , 2007, Discret. Appl. Math..

[6]  Antonio Frangioni,et al.  Generalized Bundle Methods , 2002, SIAM J. Optim..

[7]  Jørgen Tind,et al.  An interior point method in Dantzig-Wolfe decomposition , 1999, Comput. Oper. Res..

[8]  Pierre Hansen,et al.  An Interior Point Algorithm for Minimum Sum-of-Squares Clustering , 1997, SIAM J. Sci. Comput..

[9]  Guy Desaulniers,et al.  Tabu Search, Partial Elementarity, and Generalized k-Path Inequalities for the Vehicle Routing Problem with Time Windows , 2006, Transp. Sci..

[10]  John E. Mitchell,et al.  Computational Experience with an Interior Point Cutting Plane Algorithm , 1999, SIAM J. Optim..

[11]  Munari Junior,et al.  Theoretical and computational issues for improving the performance of linear optimization methods , 2013 .

[12]  Samir Elhedhli,et al.  The integration of an interior-point cutting plane method within a branch-and-price algorithm , 2004, Math. Program..

[13]  John E. Mitchell,et al.  Solving real-world linear ordering problems using a primal-dual interior point cutting plane method , 1996, Ann. Oper. Res..

[14]  Pierre Hansen,et al.  Stabilized column generation , 1998, Discret. Math..

[15]  Jacek Gondzio,et al.  Using the primal-dual interior point algorithm within the branch-price-and-cut method , 2013, Comput. Oper. Res..

[16]  Paul Wentges Weighted Dantzig-Wolfe decomposition for linear mixed-integer programming , 1997 .

[17]  Claude Lemaréchal,et al.  Comparison of bundle and classical column generation , 2008, Math. Program..

[18]  Jacek Gondzio,et al.  New developments in the primal-dual column generation technique , 2013, Eur. J. Oper. Res..

[19]  Michel Gendreau,et al.  Interior point stabilization for column generation , 2007, Oper. Res. Lett..

[20]  Jacek Gondzio,et al.  Column Generation With a Primal-Dual Method , 1996 .

[21]  J. Desrosiers,et al.  BRANCH-PRICE-AND-CUT ALGORITHMS , 2011 .

[22]  Jacek Gondzio,et al.  Interior point methods 25 years later , 2012, Eur. J. Oper. Res..

[23]  Marius M. Solomon,et al.  Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints , 1987, Oper. Res..

[24]  Jacques Desrosiers,et al.  Selected Topics in Column Generation , 2002, Oper. Res..