Counting Spanning Trees ∗

This book provides a comprehensive introduction to the modern study of spanning trees. A spanning tree for a graph G is a subgraph of G that is a tree and contains all the vertices of G. There are many situations in which good spanning trees must be found. Whenever one wants to find a simple, cheap, yet efficient way to connect a set of terminals, be they computers, telephones, factories, or cities, a solution is normally one kind of spanning trees. Spanning trees prove important for several reasons:

[1]  Arnd Roth,et al.  Some Methods for Counting the Spanning Trees in Labelled Molecular Graphs, Examined in Relation to Certain Fullerenes , 1997, Discret. Appl. Math..

[2]  David E. Johnson,et al.  On Enumerating the Trees of the Wheel and Other Special Graphs , 1983 .

[3]  Fan Chung Graham,et al.  A Combinatorial Laplacian with Vertex Weights , 1996, J. Comb. Theory, Ser. A.

[4]  Huang Qiongxiang,et al.  On the number of spanning trees and Eulerian tours in iterated line digraphs , 1997 .

[5]  Sóstenes Lins,et al.  On the Fundamental Group of 3-Gems and a 'Planar' Class of 3-manifolds , 1988, Eur. J. Comb..

[6]  J. W. Essam,et al.  Counting the spanning trees of a labelled molecular-graph , 1983 .

[7]  N. Biggs Algebraic Potential Theory on Graphs , 1997 .

[8]  C. W. Borchardt Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante. , 1860 .

[9]  Donald E. Knuth Aztec Diamonds, Checkerboard Graphs, and Spanning Trees , 1995 .

[10]  Mihai Ciucu,et al.  A Complementation Theorem for Perfect Matchings of Graphs Having a Cellular Completion , 1998, J. Comb. Theory, Ser. A.

[11]  T. Chow The -spectrum and spanning trees of tensor products of bipartite graphs , 1997 .

[12]  Helmut Prodinger,et al.  Spanning tree formulas and chebyshev polynomials , 1986, Graphs Comb..

[13]  Donald E. Knuth Another enumeration of trees , 1968 .

[14]  Igor Pak,et al.  Enumeration of spanning trees of certain graphs , 1990 .

[15]  S. Chaiken A Combinatorial Proof of the All Minors Matrix Tree Theorem , 1982 .

[16]  R. Vohra,et al.  Counting spanning trees in the graphs of Kleitman and Golden and a generalization , 1984 .

[17]  Cycles and spanning trees , 1991 .

[18]  J. Moon Counting labelled trees , 1970 .

[19]  Germain Kreweras Complexité et circuits eulériens dans les sommes tensorielles de graphes , 1978, J. Comb. Theory, Ser. B.

[20]  The number of spanning trees of the generalized hypercube network , 1993 .

[21]  Abelian Avalanches,et al.  Abelian Avalanches and Tutte Polynomials , 1992 .

[22]  B. Golden,et al.  Counting Trees in a Certain Class of Graphs , 1975 .

[23]  D. A. Waller General solution to the spanning tree enumeration problem in arbitrary multigraph joins , 1976 .

[24]  William Watkins,et al.  The laplacian matrix of a graph: unimodular congruence , 1990 .

[25]  Norman Biggs,et al.  Chip-Firing and the Critical Group of a Graph , 1999 .

[26]  Stephen B. Maurer Matrix Generalizations of Some Theorems on Trees, Cycles and Cocycles in Graphs , 1976 .

[27]  F. T. Boesch,et al.  A Conjecture on the Number of Spanning Trees in the Square of a Cycle , 1982 .

[28]  Alexander K. Kelmans Spanning trees of extended graphs , 1992, Comb..