Hierarchical Argyris Finite Element Method for Adaptive and Multigrid Algorithms

Abstract The global arrangement of the degrees of freedom in a standard Argyris finite element method (FEM) enforces C 2 {C^{2}} at interior vertices, while solely global C 1 {C^{1}} continuity is required for the conformity in H 2 {H^{2}} . Since the Argyris finite element functions are not C 2 {C^{2}} at the midpoints of edges in general, the bisection of an edge for mesh-refinement leads to non-nestedness: the standard Argyris finite element space A ′ ⁢ ( 𝒯 ) {A^{\prime}(\mathcal{T})} associated to a triangulation 𝒯 {\mathcal{T}} with a refinement 𝒯 ^ {\widehat{\mathcal{T}}} is not a subspace of the standard Argyris finite element space A ′ ⁢ ( 𝒯 ^ ) {A^{\prime}(\widehat{\mathcal{T}})} associated to the refined triangulation 𝒯 ^ {\widehat{\mathcal{T}}} . This paper suggests an extension A ⁢ ( 𝒯 ) {A(\mathcal{T})} of A ′ ⁢ ( 𝒯 ) {A^{\prime}(\mathcal{T})} that allows for nestedness A ⁢ ( 𝒯 ) ⊂ A ⁢ ( 𝒯 ^ ) {A(\mathcal{T})\subset A(\widehat{\mathcal{T}})} under mesh-refinement. The extended Argyris finite element space A ⁢ ( 𝒯 ) {A(\mathcal{T})} is called hierarchical, but is still based on the concept of the Argyris finite element as a triple ( T , P 5 ⁢ ( T ) , ( Λ 1 , … , Λ 21 ) ) {(T,P_{5}(T),(\Lambda_{1},\dots,\Lambda_{21}))} in the sense of Ciarlet. The other main results of this paper are the optimal convergence rates of an adaptive mesh-refinement algorithm via the abstract framework of the axioms of adaptivity and uniform convergence of a local multigrid V-cycle algorithm for the effective solution of the discrete system.

[1]  Joseph E. Pasciak,et al.  Shift Theorems for the Biharmonic Dirichlet Problem , 2002 .

[2]  Jean-Luc Guermond,et al.  Finite element quasi-interpolation and best approximation , 2015, 1505.06931.

[3]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[4]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[5]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[6]  W. Gibbs,et al.  Finite element methods , 2017, Graduate Studies in Mathematics.

[7]  Carsten Carstensen,et al.  Axioms of adaptivity , 2013, Comput. Math. Appl..

[8]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[9]  Xuejun Xu,et al.  Local Multilevel Methods with Rectangular Finite Elements for the Biharmonic Problem , 2017, SIAM J. Sci. Comput..

[10]  Ricardo H. Nochetto,et al.  Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..

[11]  Xuejun Zhang,et al.  Multilevel Schwarz Methods for the Biharmonic Dirichlet Problem , 1994, SIAM J. Sci. Comput..

[12]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[13]  Ricardo H. Nochetto,et al.  Optimal multilevel methods for graded bisection grids , 2012, Numerische Mathematik.

[14]  Xuying Zhao,et al.  Convergence analysis of the adaptive finite element method with the red-green refinement , 2010 .

[15]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[16]  Jun Hu,et al.  Convergence and optimality of the adaptive Morley element method , 2012, Numerische Mathematik.

[17]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[18]  Jinchao Xu,et al.  The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .

[19]  Jinchao Xu,et al.  The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.

[20]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[21]  Jun Hu,et al.  A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes , 2014, Comput. Math. Appl..

[22]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[23]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[24]  Zhiming Chen,et al.  Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems , 2006 .

[25]  Vivette Girault,et al.  Hermite interpolation of nonsmooth functions preserving boundary conditions , 2002, Math. Comput..

[26]  Carsten Carstensen,et al.  Axioms of Adaptivity with Separate Marking for Data Resolution , 2017, SIAM J. Numer. Anal..

[27]  Susanne C. Brenner,et al.  A balancing domain decomposition by constraints preconditioner for a weakly over‐penalized symmetric interior penalty method , 2013, Numer. Linear Algebra Appl..

[28]  Susanne C. Brenner,et al.  C0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains , 2005, J. Sci. Comput..