Hierarchical Argyris Finite Element Method for Adaptive and Multigrid Algorithms
暂无分享,去创建一个
[1] Joseph E. Pasciak,et al. Shift Theorems for the Biharmonic Dirichlet Problem , 2002 .
[2] Jean-Luc Guermond,et al. Finite element quasi-interpolation and best approximation , 2015, 1505.06931.
[3] R. Nochetto,et al. Theory of adaptive finite element methods: An introduction , 2009 .
[4] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[5] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[6] W. Gibbs,et al. Finite element methods , 2017, Graduate Studies in Mathematics.
[7] Carsten Carstensen,et al. Axioms of adaptivity , 2013, Comput. Math. Appl..
[8] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[9] Xuejun Xu,et al. Local Multilevel Methods with Rectangular Finite Elements for the Biharmonic Problem , 2017, SIAM J. Sci. Comput..
[10] Ricardo H. Nochetto,et al. Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..
[11] Xuejun Zhang,et al. Multilevel Schwarz Methods for the Biharmonic Dirichlet Problem , 1994, SIAM J. Sci. Comput..
[12] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[13] Ricardo H. Nochetto,et al. Optimal multilevel methods for graded bisection grids , 2012, Numerische Mathematik.
[14] Xuying Zhao,et al. Convergence analysis of the adaptive finite element method with the red-green refinement , 2010 .
[15] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[16] Jun Hu,et al. Convergence and optimality of the adaptive Morley element method , 2012, Numerische Mathematik.
[17] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[18] Jinchao Xu,et al. The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .
[19] Jinchao Xu,et al. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.
[20] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[21] Jun Hu,et al. A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes , 2014, Comput. Math. Appl..
[22] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[23] B. Plamenevskii,et al. Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .
[24] Zhiming Chen,et al. Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems , 2006 .
[25] Vivette Girault,et al. Hermite interpolation of nonsmooth functions preserving boundary conditions , 2002, Math. Comput..
[26] Carsten Carstensen,et al. Axioms of Adaptivity with Separate Marking for Data Resolution , 2017, SIAM J. Numer. Anal..
[27] Susanne C. Brenner,et al. A balancing domain decomposition by constraints preconditioner for a weakly over‐penalized symmetric interior penalty method , 2013, Numer. Linear Algebra Appl..
[28] Susanne C. Brenner,et al. C0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains , 2005, J. Sci. Comput..