Ab initio study of the electric-field-gradient-induced birefringence of a polar molecule: CO

An ab initio coupled cluster singles and doubles (CCSD) investigation of the electric-field- gradient-induced birefringence (EFGB) of a polar molecule, CO, is presented. The so-called “effective quadrupole center” (EQC), the origin to which the quadrupole moment deduced from EFGB experiments refers for dipolar molecules and which experimentalists cannot determine directly, is computed within two different semiclassical theories of the EFGB. The temperature independent frequency dependent contribution to the birefringence is determined as well. The molecular electric quadrupole moment with the origin at the EQC is determined within the two theories via an accurate value of the quadrupole moment referring to the center of mass, obtained using well-established hierarchies of basis sets and wave function models, and the calculated EQCs. The final theoretical values result as the basis set limit at the CCSD(T) level completed with estimates for relativistic effects, correlation contributions beyond CCSD(T), ro...

[1]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[2]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[3]  P. Jørgensen,et al.  Coupled cluster investigation of Sternheimer shieldings and electric field gradient polarizabilities , 2000 .

[4]  D. E. Logan On the dielectric theory of fluids: III. The dielectric constant of non-polar fluids within the quadrupole approximation , 1982 .

[5]  J. Gauss,et al.  Polarizabilities of CO, N2, HF, Ne, BH, and CH+ from ab initio calculations: Systematic studies of electron correlation, basis set errors, and vibrational contributions , 1998 .

[6]  Sonia Coriani,et al.  The molecular electric quadrupole moment of N2 , 1998 .

[7]  P. Jørgensen,et al.  CCSDT calculations of molecular equilibrium geometries , 1997 .

[8]  D. M. Bishop,et al.  Molecular vibrational and rotational motion in static and dynamic electric fields , 1990 .

[9]  A. D. Buckingham,et al.  Direct Method of Measuring Molecular Quadrupole Moments , 1959 .

[10]  C. Hättig,et al.  THE ELECTRIC-FIELD-GRADIENT-INDUCED BIREFRINGENCE OF HELIUM, NEON, ARGON, AND SF6 , 1999 .

[11]  A. Buckingham,et al.  Quadrupole moments of some simple molecules , 1968 .

[12]  J. H. Williams,et al.  The electric quadrupole moments of benzene and hexafluorobenzene , 1981 .

[13]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[14]  W. Steele,et al.  The quadrupole moment of chlorine , 1980 .

[15]  P. Jørgensen,et al.  Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory , 1997 .

[16]  W. Hüttner,et al.  The temperature dependence of the Cotton-Mouton effect of N2, CO, N2O, CO2, OCS, and CS2 in the gaseous state , 1984 .

[17]  Allan H. White,et al.  Rayleigh scattering depolarization ratio and molecular polarizability anisotropy for gases , 1978 .

[18]  W. Meerts,et al.  Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy , 1977 .

[19]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[20]  A. D. Buckingham,et al.  The birefringence induced in spherical molecules by an electric field gradient , 1971 .

[21]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[22]  Sonia Coriani,et al.  On the molecular electric quadrupole moment of C2H2 , 1999 .

[23]  A. D. Buckingham,et al.  The quadrupole moment of the carbon dioxide molecule , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  Trygve Helgaker,et al.  A direct atomic orbital driven implementation of the coupled cluster singles and doubles (CCSD) model , 1994 .

[25]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[26]  Ove Christiansen,et al.  Cauchy moments and dispersion coefficients using coupled cluster linear response theory , 1997 .

[27]  A. Dumitru,et al.  Quantum theory of light scattering with environmental perturbations and finite temperatures , 1998 .

[28]  R. E. Raab,et al.  Multipole moments and Maxwell's equations , 1992 .

[29]  P. Jørgensen,et al.  Dispersion coefficients for first hyperpolarizabilities using coupled cluster quadratic response theory , 1998 .

[30]  A. D. Buckingham,et al.  The quadrupole moments of dipolar molecules , 1968 .

[31]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[32]  R. E. Raab,et al.  A new molecular theory of field gradient induced birefringence used for measuring electric quadrupole moments , 1991 .

[33]  Julian Vrbancich,et al.  Quadrupole moments of benzene, hexafluorobenzene and other non-dipolar aromatic molecules , 1980 .

[34]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[35]  Trygve Helgaker,et al.  The integral‐direct coupled cluster singles and doubles model , 1996 .

[36]  P. Jørgensen,et al.  First-order one-electron properties in the integral-direct coupled cluster singles and doubles model , 1997 .

[37]  A. D. Buckingham,et al.  Molecular quadrupole moments. Quantum correction to the classical formula , 1966 .

[38]  D. Neumark,et al.  The quadrupole moments of carbon dioxide and carbon disulphide , 1981 .

[39]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[40]  J. Olsen,et al.  Full configuration interaction benchmark calculations of first-order one-electron properties of BH and HF , 1999 .

[41]  R. E. Raab,et al.  Measurement of the electric quadrupole moments of CO 2 , CO and N 2 , 1989 .

[42]  J. Williams,et al.  Electric field-gradient-induced birefringence in N2, C2H6, C3H6, Cl2, N2O and CH3F , 1983 .

[43]  Trygve Helgaker,et al.  The molecular structure of ferrocene , 1996 .

[44]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[45]  D. Yarkony,et al.  Modern Electronic Structure Theory: Part I , 1995 .

[46]  D. M. Bishop,et al.  A perturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities , 1991 .

[47]  R. E. Raab,et al.  Physical implications of the use of primitive and traceless electric quadrupole moments , 1997 .

[48]  Antonio Rizzo,et al.  COUPLED CLUSTER INVESTIGATION OF THE ELECTRIC-FIELD-GRADIENT-INDUCED BIREFRINGENCE OF H2, N2, C2H2, AND CH4 , 1998 .