Synthesis and characterization of SiC:H ultrafine powder generated in an argon–silane–methane low-pressure radio-frequency discharge

The peculiarity of dusty plasma reactors offers a convenient way to obtain processed particles at submicronic levels, with successive layers of different materials grown by using pulsed gas flows, and different plasma chemistries in succession. This concept is applied to the synthesis of silicon carbide (SiC) particles. In this paper two significant situations are reported showing that particles can be synthesized with different properties by varying the process parameters (gas-flow handling, radio-frequency power level). These properties include broad or narrow size dispersion, almost crystalline or amorphous structure, and widely varying Si/C stoichiometry. Monosized particles with high specific surfaces have been obtained by a two-step growth process by using limited radio-frequency power.

[1]  Wen‐Hao Chang,et al.  A study of the Franz–Keldysh oscillations in electromodulation reflectance of Si-delta-doped GaAs by a fast Fourier transformation , 1998 .

[2]  W. J. Choyke,et al.  Photoluminescence and transport studies of boron in 4H SiC , 1998 .

[3]  R. Buss,et al.  Synthesis of silicon nitride particles in pulsed radio frequency plasmas , 1996 .

[4]  W. Schwarzenbach,et al.  Anionic clusters in dusty hydrocarbon and silane plasmas , 1996 .

[5]  A. Fridman,et al.  Dusty plasma formation: Physics and critical phenomena. Theoretical approach , 1996 .

[6]  F. Gitzhofer Induction plasma synthesis of ultrafine SiC , 1996 .

[7]  J. Perrin,et al.  Mass spectrometry detection of radicals in SiH4-CH4-H2 glow discharge plasmas , 1995 .

[8]  J. Szépvölgyi,et al.  Experimental investigation into the synthesis of silicon nitride powder in an RF thermal plasma reactor using a factorial design approach , 1995 .

[9]  André Bouchoule,et al.  Particle nucleation and growth in a low-pressure argon-silane discharge , 1994 .

[10]  A. Zwick,et al.  Chemical bonding analysis of a-SiC : H films by Raman spectroscopy , 1994 .

[11]  A. Bouchoule,et al.  Particulate formation and dusty plasma behaviour in argon-silane RF discharge , 1993 .

[12]  A. Howling,et al.  Negative hydrogenated silicon ion clusters as particle precursors in RF silane plasma deposition experiments , 1993 .

[13]  H. Hommel,et al.  Evolution of the structure of ultrafine SiC-laser-formed powders with synthesis conditions , 1993 .

[14]  David B. Graves,et al.  Sheath structure around particles in low-pressure discharges , 1992 .

[15]  J. Boeuf,et al.  Transition from a capacitive to a resistive regime in a silane radio frequency discharge and its possible relation to powder formation , 1992 .

[16]  H. Hommel,et al.  NMR characterisation of Si-based ultrafine laser formed powders , 1992 .

[17]  A. Bouchoule,et al.  Measurements of particle size kinetics from nanometer to micrometer scale in a low‐pressure argon‐silane radio‐frequency discharge , 1992 .

[18]  Mark J. Kushner,et al.  Monte Carlo‐fluid hybrid model of the accumulation of dust particles at sheath edges in radio‐frequency discharges , 1991 .

[19]  I. Solomon,et al.  Characterization of methylated amorphous silicon by IR and Raman spectroscopies , 1991 .

[20]  J. Perrin,et al.  Spatially resolved optical emission and electrical properties of SiH4 RF discharges at 13.56 MHz in a symmetric parallel-plate configuration , 1991 .

[21]  A. Rhallabi,et al.  Computer simulation of a carbon-deposition plasma in CH/sub 4/ , 1991 .

[22]  D. K. Basa,et al.  Annealing and crystallization processes in a hydrogenated amorphous SiC alloy film , 1990 .

[23]  Gary S. Selwyn,et al.  In situ laser diagnostic studies of plasma‐generated particulate contamination , 1989 .

[24]  M. Shiratani,et al.  Effects of low‐frequency modulation on rf discharge chemical vapor deposition , 1988 .

[25]  S. S. Mitra,et al.  Properties of compensated and doped amorphous SiC and GeSi alloy films , 1986 .