Leaf realization problem, caterpillar graphs and prefix normal words

Abstract Given a simple graph G with n vertices and a natural number i ≤ n , let L G ( i ) be the maximum number of leaves that can be realized by an induced subtree T of G with i vertices. We introduce a problem that we call the leaf realization problem, which consists in deciding whether, for a given sequence of n + 1 natural numbers ( l 0 , l 1 , … , l n ) , there exists a simple graph G with n vertices such that l i = L G ( i ) for i = 0 , 1 , … , n . We present basic observations on the structure of these sequences for general graphs and trees. In the particular case where G is a caterpillar graph, we exhibit a bijection between the set of the discrete derivatives of the form ( Δ L G ( i ) ) 1 ≤ i ≤ n − 3 and the set of prefix normal words.

[1]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[2]  S. Hakimi On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I , 1962 .

[3]  D. Gale A theorem on flows in networks , 1957 .

[4]  Zsuzsanna Lipták,et al.  On Table Arrangements, Scrabble Freaks, and Jumbled Pattern Matching , 2010, FUN.

[5]  Wai-Kai Chen On the realization of a (p,s)-digraph with prescribed degrees , 1966 .

[6]  Vadim V. Lozin,et al.  Words and Graphs , 2016, Monographs in Theoretical Computer Science. An EATCS Series.

[7]  Zsuzsanna Lipták,et al.  On Prefix Normal Words , 2011, Developments in Language Theory.

[8]  D. R. Fulkerson Zero-one matrices with zero trace. , 1960 .

[9]  Si Chen,et al.  The Generalized Regenerator Location Problem , 2015, INFORMS J. Comput..

[10]  Frank Ruskey,et al.  On Combinatorial Generation of Prefix Normal Words , 2014, CPM.

[11]  H. Ryser Combinatorial Properties of Matrices of Zeros and Ones , 1957, Canadian Journal of Mathematics.

[12]  Annabell Berger,et al.  A note on the characterization of digraphic sequences , 2011, Discret. Math..

[13]  Daniel J. Kleitman,et al.  Algorithms for constructing graphs and digraphs with given valences and factors , 1973, Discret. Math..

[14]  Michael E. Saks,et al.  Maximum induced trees in graphs , 1986, J. Comb. Theory, Ser. B.

[15]  Mohammed J. Zaki Efficiently mining frequent trees in a forest , 2002, KDD.

[16]  Gad M. Landau,et al.  Scaled and permuted string matching , 2004, Inf. Process. Lett..

[17]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[18]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[19]  Mohammad Sohel Rahman,et al.  Indexing permutations for binary strings , 2010, Inf. Process. Lett..

[20]  Frank Ruskey,et al.  On Prefix Normal Words and Prefix Normal Forms , 2016, Theor. Comput. Sci..

[21]  Richard P. Anstee,et al.  Properties of a class of $(0,,1)$-matrices covering a given matrix , 1982 .

[22]  Alexandre Blondin Massé,et al.  Fully leafed induced subtrees , 2018, IWOCA.

[23]  Václav Havel,et al.  Poznámka o existenci konečných grafů , 1955 .

[24]  Srikanta Tirthapura,et al.  EvoMiner: frequent subtree mining in phylogenetic databases , 2014, Knowledge and Information Systems.

[25]  Frank Harary,et al.  The number of caterpillars , 1973, Discret. Math..

[26]  Maurice Tchuente,et al.  Arbres avec un nombre maximum de sommets pendants , 1984, Discret. Math..

[27]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[28]  Alexandre Blondin Massé,et al.  Fully Leafed Tree-Like Polyominoes and Polycubes , 2017, IWOCA.

[29]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[30]  Azzedine Boukerche,et al.  A Performance Evaluation of a Novel Energy-Aware Data-Centric Routing Algorithm in Wireless Sensor Networks , 2005, Wirel. Networks.