speech analyzer Markov model cache
暂无分享,去创建一个
A speech recognizer includes a plurality of stored constrained hidden Markov model reference templates and a set of stored signals representative of prescribed acoustic features of the said plurality of reference patterns. The Markov model template includes a set of N state signals. The number of states is preselected to be independent of the reference pattern acoustic features and preferably substantially smaller than the number of acoustic feature frames of the reference patterns. An input utterance is analyzed to form a sequence of said prescribed feature signals representative of the utterance. The utterance representative prescribed feature signal sequence is combined with the N state constrained hidden Markov model template signals to form a signal representative of the probability of the utterance being each reference pattern. The input speech pattern is identified as one of the reference patterns responsive to the probability representative signals.
[1] F. Jelinek,et al. Continuous speech recognition by statistical methods , 1976, Proceedings of the IEEE.