The Local Solvability of a Hamilton--Jacobi--Bellman PDE around a Nonhyperbolic Critical Point

We show the existence of a local solution to a Hamilton--Jacobi--Bellman (HJB) PDE around a critical point where the corresponding Hamiltonian ODE is not hyperbolic, i.e., it has eigenvalues on the imaginary axis. Such problems arise in nonlinear regulation, disturbance rejection, gain scheduling, and linear parameter varying control. The proof is based on an extension of the center manifold theorem due to Aulbach, Flockerzi, and Knobloch. The method is easily extended to the Hamilton--Jacobi--Isaacs (HJI) PDE. Software is available on the web to compute local approximtate solutions of HJB and HJI PDEs.

[1]  A. Isidori,et al.  Output regulation of nonlinear systems , 1990 .

[2]  Arthur J. Krener,et al.  The existence of optimal regulators , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[3]  D. Flockerzi,et al.  An existence theorem for invariant manifolds , 1987 .

[4]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[5]  E. G. Al'brekht On the optimal stabilization of nonlinear systems , 1961 .

[6]  Arthur J. Krener OPTIMAL MODEL MATCHING CONTROLLERS FOR LINEAR AND NONLINEAR SYSTEMS , 1993 .

[7]  Arthur J. Krener Optimal Model Matching Controllers for Linear and Nonlinear Systems , 1992 .

[8]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[9]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[10]  J. Carr Applications of Centre Manifold Theory , 1981 .

[11]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[12]  Christopher I. Byrnes,et al.  Structurally stable output regulation of nonlinear systems , 1997, Autom..

[13]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[14]  D. Lukes Optimal Regulation of Nonlinear Dynamical Systems , 1969 .

[15]  W. Rugh,et al.  An approximation method for the nonlinear servomechanism problem , 1992 .

[16]  A. Schaft On a state space approach to nonlinear H ∞ control , 1991 .

[17]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[18]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[19]  B. Francis The linear multivariable regulator problem , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[20]  Arthur J. Krener The Construction of Optimal Linear and Nonlinear Regulators , 1992 .

[21]  A. Krener Necessary and sufficient conditions for nonlinear worst case (H∞) control and estimation , 1997 .

[22]  A. Kelley The stable, center-stable, center, center-unstable, unstable manifolds , 1967 .