Polycrystalline Ho: LuAG laser ceramics: Fabrication, microstructure, and optical characterization
暂无分享,去创建一个
B. Yao | Jiangxu Li | H. Kou | Yu-bai Pan | Tengfei Xie | Z. Ye | Chaoyu Li
[1] B. Yao,et al. A graphene saturable absorber for a Tm:YLF pumped passively Q-switched Ho:LuAG laser , 2016 .
[2] Huai-jin Zhang,et al. Fabrication, microstructure and laser performance of Nd3+-doped Lu3Al5O12 transparent ceramics , 2016 .
[3] B. Yao,et al. Doubly Q-switched Ho:LuAG laser with acoustic-optic modulator and Cr²⁺:ZnS saturable absorber. , 2015, Applied optics.
[4] Yubai Pan,et al. High-power Cr2+:ZnS saturable absorber passively Q-switched Ho:YAG ceramic laser and its application to pumping of a mid-IR OPO. , 2015, Optics letters.
[5] D. Shen,et al. Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics , 2015 .
[6] M. Kuczyk,et al. Current evidence of transurethral Ho:YAG and Tm:YAG treatment of bladder cancer: update 2014 , 2015, World Journal of Urology.
[7] Chun-qing Gao,et al. A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality. , 2014, Optics express.
[8] D. Shen,et al. Optical properties and laser performance of Ho : LuAG ceramics , 2013 .
[9] Y. Ju,et al. 103 W in-band dual-end-pumped Ho:YAG laser. , 2012, Optics letters.
[10] Y. Ju,et al. The output characteristics of double-end-pumped Ho:LuAG laser at room temperature , 2012 .
[11] Federico Pirzio,et al. Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD , 2012 .
[12] D. Shen,et al. Tm:fiber laser in-band pumped Ho:LuAG laser with over 18 W output at 2124.5 nm , 2011 .
[13] S. Lamrini,et al. Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm , 2011, Applied Physics B.
[14] P. Leisher,et al. Diode pumped Ho:YAG and Ho:LuAG lasers, Q-switching and second harmonic generation , 2011 .
[15] Mingjian Wang,et al. High-power gain-switched Ho:LuAG rod laser , 2011 .
[16] Günter Huber,et al. Thermal and laser properties of Yb:LuAG for kW thin disk lasers. , 2010, Optics express.
[17] Yu-bai Pan,et al. Fabrication and photoluminescence characteristic of Pr:LuAG scintillator ceramics , 2010 .
[18] Xiaodong Xu,et al. Crystal growth, spectral and laser properties of Nd:LuAG single crystal , 2009 .
[19] Y. Ju,et al. 8.5 W room temperature continuous wave operation of a Ho:LuAG laser , 2009 .
[20] K. Kamada,et al. Crystal Growth and Scintillation Properties of 2-Inch-Diameter ${\rm Pr}:{\rm Lu}_{3}{\rm Al}_{5} {\rm O} _{12}$ (Pr:LuAG) Single Crystal , 2008, IEEE Transactions on Nuclear Science.
[21] Norman P. Barnes,et al. Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12 , 2006 .
[22] K. Kamada,et al. Growth and scintillation properties of Pr-doped Lu3Al5O12 crystals , 2006 .
[23] N. Ishizawa,et al. Crystal growth and properties of (Lu,Y)3Al5O12 , 2004 .
[24] H. Machida,et al. Growth and characterization of Tm, Ho-codoped Lu3Al5O12 single crystals by the Czochralski technique , 2002 .
[25] Leonard A. Pomeranz,et al. Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP 2 optical parametric oscillators , 2000 .
[26] S. Henderson,et al. Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers. , 1991, Optics letters.
[27] Paul G. Klemens,et al. Thermal Resistance due to Point Defects at High Temperatures , 1960 .