Gait and the energetics of locomotion in horses
暂无分享,去创建一个
It seems reasonable that quadrupeds should change gait from a walk to a trot to a gallop in such a way as to minimize their energy consumption, as human beings are known1 to change from a walk to a run at a particular speed (2.4 m s−1) below which walking requires less energy than running and above which the opposite is true. Thus by changing gait, human beings keep the energy cost of locomotion to a minimum as their speed increases. One reason this relation holds is that in humans, metabolic rate increases curvilinearly with walking speed1. If metabolism were a curvilinear function of speed within each of the gaits used by quadrupeds, it would support the hypothesis that they also change gait to minimize energetic cost. There is an old controversy about whether metabolic rate increases linearly or curvilinearly in running humans1,2 but all previous reports have suggested that metabolic rate increases linearly with speed in quadrupeds. Extended gaits were an important experimental tool in the study of human gait changes; thus we have trained three small horses (110–170 kg) to walk, trot and gallop on a motorized treadmill, and to extend their gaits on command. We report here that, using measurements of rates of oxygen consumption as an indicator of rates of energy consumption, we have confirmed that the natural gait at any speed indeed entails the smallest possible energy expenditure.
[1] H. Knuttgen. Oxygen uptake and pulse rate while running with undetermined and determined stride lengths at different speeds. , 1961, Acta physiologica Scandinavica.
[2] C. Pennycuick. On the running of the gnu (Connochaetes taurinus) and other animals , 1975 .