Deep learning approaches for natural product discovery from plant endophytic microbiomes

[1]  Peter D. Karp,et al.  Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology , 2019, Briefings Bioinform..

[2]  Uwe Ohler,et al.  Deep learning for genomics using Janggu , 2020, Nature Communications.

[3]  M. Abdelhamid,et al.  Linking Endophytic Fungi to Medicinal Plants Therapeutic Activity. A Case Study on Asteraceae , 2020 .

[4]  Hai-Wei Zhou,et al.  Anti-cervical cancer activity of secondary metabolites of endophytic fungi from Ginkgo biloba. , 2020, Cancer biomarkers : section A of Disease markers.

[5]  S. Kembel,et al.  Adaptive matching between phyllosphere bacteria and their tree hosts in a neotropical forest , 2020, Microbiome.

[6]  Byung-Kwan Cho,et al.  Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis , 2020, Frontiers in Molecular Biosciences.

[7]  A. Siddique Viruses of endophytic and pathogenic forest fungi , 2020, Virus Genes.

[8]  J. Kalaitzis,et al.  Genome mining of a fungal endophyte of Taxus yunnanensis (Chinese yew) leads to the discovery of a novel azaphilone polyketide, lijiquinone , 2020, Microbial biotechnology.

[9]  L. Albarano,et al.  Genome Mining as New Challenge in Natural Products Discovery , 2020, Marine drugs.

[10]  Scott A. Walper,et al.  Bacterial Membrane Vesicles as Mediators of Microbe – Microbe and Microbe – Host Community Interactions , 2020, Frontiers in Microbiology.

[11]  A. Baten,et al.  Genome and secretome analysis of jute endophyte Grammothele lineata strain SDL-CO-2015-1: Insights into its lignocellulolytic structure and secondary metabolite profile. , 2020, Genomics.

[12]  D. Thakur,et al.  Phylogenetic and Functional Characterization of Culturable Endophytic Actinobacteria Associated With Camellia spp. for Growth Promotion in Commercial Tea Cultivars , 2020, Frontiers in Microbiology.

[13]  A. Brakhage,et al.  Targeted induction of a silent fungal gene cluster encoding the bacteria-specific germination inhibitor fumigermin , 2020, eLife.

[14]  P. Gundel,et al.  Simulated folivory increases vertical transmission of fungal endophytes that deter herbivores and alter tolerance to herbivory in Poa autumnalis. , 2020, Annals of botany.

[15]  S. Moineau,et al.  Phage diversity, genomics and phylogeny , 2020, Nature Reviews Microbiology.

[16]  Emma J. Chory,et al.  A Deep Learning Approach to Antibiotic Discovery , 2020, Cell.

[17]  Yongmei Li,et al.  Unraveling the metabolite signature of citrus showing defense response towards Candidatus Liberibacter asiaticus after application of endophyte Bacillus subtilis L1-21. , 2020, Microbiological research.

[18]  Gerald Maggiora,et al.  The impact of chemoinformatics on drug discovery in the pharmaceutical industry , 2020, Expert opinion on drug discovery.

[19]  E. Čellárová,et al.  Computational screening of miRNAs and their targets in leaves of Hypericum spp. by transcriptome-mining: a pilot study , 2020, Planta.

[20]  J. Harrison,et al.  The diversity and distribution of endophytes across biomes, plant phylogeny, and host tissues-how far have we come and where do we go from here? , 2020, Environmental microbiology.

[21]  J. van Staden,et al.  A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. , 2020, Biotechnology advances.

[22]  Hideki Takahashi,et al.  Virus Latency and the Impact on Plants , 2019, Front. Microbiol..

[23]  Joseph N. Paulson,et al.  Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome , 2019, Science.

[24]  P. Zhu,et al.  Advances in targeting and heterologous expression of genes involved in the synthesis of fungal secondary metabolites , 2019, RSC advances.

[25]  R. Seidl,et al.  Harnessing Deep Learning in Ecology: An Example Predicting Bark Beetle Outbreaks , 2019, Front. Plant Sci..

[26]  J. Lipuma,et al.  Loci Encoding Compounds Potentially Active against Drug-Resistant Pathogens amidst a Decreasing Pool of Novel Antibiotics , 2019, Applied and Environmental Microbiology.

[27]  Mohammad Alanjary,et al.  Applied evolution: phylogeny-based approaches in natural products research. , 2019, Natural product reports.

[28]  A. Deutschbauer,et al.  Genome-wide identification of Pseudomonas syringae genes required for fitness during colonization of the leaf surface and apoplast , 2019, Proceedings of the National Academy of Sciences.

[29]  Danny A. Bitton,et al.  A deep learning genome-mining strategy for biosynthetic gene cluster prediction , 2019, Nucleic acids research.

[30]  M. Sitohy,et al.  Restoring the Taxol biosynthetic machinery of Aspergillus terreus by Podocarpus gracilior Pilger microbiome, with retrieving the ribosome biogenesis proteins of WD40 superfamily , 2019, Scientific Reports.

[31]  P. A. Caicedo,et al.  Antioxidant activity of exo‐metabolites produced by Fusarium oxysporum: An endophytic fungus isolated from leaves of Otoba gracilipes , 2019, MicrobiologyOpen.

[32]  F. Vinale,et al.  The Shifting Mycotoxin Profiles of Endophytic Fusarium Strains: A Case Study , 2019, Agriculture.

[33]  G. Ravikanth,et al.  How and why do endophytes produce plant secondary metabolites? , 2019, Symbiosis.

[34]  M. Kurina-Sanz,et al.  Natural trypanocidal product produced by endophytic fungi through co-culturing , 2019, Folia Microbiologica.

[35]  M. Seidl,et al.  Chromatin-dependent regulation of secondary metabolite biosynthesis in fungi: is the picture complete? , 2019, FEMS microbiology reviews.

[36]  C. Gutjahr,et al.  Systems Biology of Plant-Microbiome Interactions. , 2019, Molecular plant.

[37]  Ying Li,et al.  Iso-Seq analysis of the Taxus cuspidata transcriptome reveals the complexity of Taxol biosynthesis , 2019, BMC Plant Biology.

[38]  J. Koricheva,et al.  Meta‐analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards , 2019, The New phytologist.

[39]  Seokhwan Hwang,et al.  Development of an interspecies interaction model: An experiment on Clostridium cadaveris and Clostridium sporogenes under anaerobic condition. , 2019, Journal of environmental management.

[40]  S. Lee,et al.  antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline , 2019, Nucleic Acids Res..

[41]  J. Nielsen,et al.  Comparative Transcriptome Analysis Shows Conserved Metabolic Regulation during Production of Secondary Metabolites in Filamentous Fungi , 2019, mSystems.

[42]  Jiang,et al.  Cross-Kingdom Small RNAs among Animals, Plants and Microbes , 2019, Cells.

[43]  Elizabeth J. Skellam Strategies for Engineering Natural Product Biosynthesis in Fungi. , 2019, Trends in biotechnology.

[44]  Yun Jin,et al.  A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae , 2019, Philosophical Transactions of the Royal Society B.

[45]  M. Mano,et al.  MicroRNAs at the Host-Bacteria Interface: Host Defense or Bacterial Offense. , 2019, Trends in microbiology.

[46]  R. Pan,et al.  Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review , 2019, Front. Microbiol..

[47]  M. Zong,et al.  Immune enhancement activity of a novel polysaccharide produced by Dendrobium officinale endophytic fungus Fusarium solani DO7 , 2019, Journal of Functional Foods.

[48]  L. Blank,et al.  Investigating metabolic interactions in a microbial co-culture through integrated modelling and experiments , 2019, bioRxiv.

[49]  S. Riyaz-Ul-Hassan,et al.  Endohyphal bacteria; the prokaryotic modulators of host fungal biology , 2019, Fungal Biology Reviews.

[50]  Wenbo Liu,et al.  Corrigendum: Powdery Mildews Are Characterized by Contracted Carbohydrate Metabolism and Diverse Effectors to Adapt to Obligate Biotrophic Lifestyle , 2018, Front. Microbiol..

[51]  K. Davis,et al.  A Genetics-Free Method for High-Throughput Discovery of Cryptic Microbial Metabolites , 2018, Nature Chemical Biology.

[52]  J. Ludwig-Mller Interplay between endophyte and host plant in the synthesis and modification of metabolites. , 2019, Endophyte biotechnology: potential for agriculture and pharmacology.

[53]  A. Schouten Saving resources: the exploitation of endophytes by plants for the biosynthesis of multi-functional defence compounds. , 2019, Endophyte biotechnology: potential for agriculture and pharmacology.

[54]  A. Schouten Endophytic fungi: definitions, diversity, distribution and their significance in plant life. , 2019, Endophyte biotechnology: potential for agriculture and pharmacology.

[55]  M. Rashmi,et al.  Secondary Metabolite Production by Endophytic Fungi: The Gene Clusters, Nature, and Expression , 2019, Reference Series in Phytochemistry.

[56]  M. S. Mukhtar,et al.  Systems Biology and Machine Learning in Plant-Pathogen Interactions. , 2019, Molecular plant-microbe interactions : MPMI.

[57]  A. Shaytan,et al.  Linking chromatin composition and structural dynamics at the nucleosome level. , 2019, Current opinion in structural biology.

[58]  N. Keller Fungal secondary metabolism: regulation, function and drug discovery , 2018, Nature Reviews Microbiology.

[59]  J. Carlson,et al.  Microbiome interactions shape host fitness , 2018, Proceedings of the National Academy of Sciences.

[60]  A. Salamov,et al.  Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication , 2018, Scientific Reports.

[61]  T. Liu,et al.  Integrated microRNA and mRNA analysis in the pathogenic filamentous fungus Trichophyton rubrum , 2018, BMC Genomics.

[62]  P. Proksch,et al.  Epigenetic modification, co-culture and genomic methods for natural product discovery , 2018, Physical Sciences Reviews.

[63]  N. Arora,et al.  Multifaceted Interactions Between Endophytes and Plant: Developments and Prospects , 2018, Front. Microbiol..

[64]  Huimin Zhao,et al.  Activation of silent biosynthetic gene clusters using transcription factor decoys , 2018, Nature Chemical Biology.

[65]  Daniel A. Jacobson,et al.  Exploration of the Biosynthetic Potential of the Populus Microbiome , 2018, mSystems.

[66]  Hao Wang,et al.  RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor , 2018, bioRxiv.

[67]  Yihan Wu,et al.  Recent advances in activating silent biosynthetic gene clusters in bacteria. , 2018, Current opinion in microbiology.

[68]  Ingo Bauer,et al.  A Class 1 Histone Deacetylase as Major Regulator of Secondary Metabolite Production in Aspergillus nidulans , 2018, Front. Microbiol..

[69]  B. Baral,et al.  Activation of microbial secondary metabolic pathways: Avenues and challenges , 2018, Synthetic and systems biotechnology.

[70]  C. Schadt,et al.  Phylogenomics Reveal the Dynamic Evolution of Fungal Nitric Oxide Reductases and Their Relationship to Secondary Metabolism , 2018, Genome biology and evolution.

[71]  Xiang-Hua Wang,et al.  Novel natural compounds from endophytic fungi with anticancer activity. , 2018, European journal of medicinal chemistry.

[72]  H. Toju,et al.  Beneficial associations between Brassicaceae plants and fungal endophytes under nutrient-limiting conditions: evolutionary origins and host-symbiont molecular mechanisms. , 2018, Current opinion in plant biology.

[73]  M. Medema,et al.  A standardized workflow for submitting data to the Minimum Information about a Biosynthetic Gene cluster (MIBiG) repository: prospects for research-based educational experiences , 2018, Standards in Genomic Sciences.

[74]  Karthik Raman,et al.  Enumerating all possible biosynthetic pathways in metabolic networks , 2018, Scientific Reports.

[75]  Chunyuan Li,et al.  Fusarihexins A and B: Novel Cyclic Hexadepsipeptides from the Mangrove Endophytic Fungus Fusarium sp. R5 with Antifungal Activities , 2018, Planta Medica.

[76]  Akifumi S. Tanabe,et al.  Network hubs in root-associated fungal metacommunities , 2018, Microbiome.

[77]  Dana L. Carper,et al.  Bacterial endophyte communities in Pinus flexilis are structured by host age, tissue type, and environmental factors , 2018, Plant and Soil.

[78]  R. Milo,et al.  The biomass distribution on Earth , 2018, Proceedings of the National Academy of Sciences.

[79]  Jarosław Grządziel,et al.  The identification and genetic diversity of endophytic bacteria isolated from selected crops , 2018, The Journal of Agricultural Science.

[80]  V. Gupta,et al.  Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review , 2018, Front. Pharmacol..

[81]  Jingyun Fang,et al.  Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems , 2018, Proceedings of the National Academy of Sciences.

[82]  T. Wubet,et al.  Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera) , 2018, Fungal Diversity.

[83]  Diane O. Inglis,et al.  HEx: A heterologous expression platform for the discovery of fungal natural products , 2018, Science Advances.

[84]  R. Sorek,et al.  Contemporary Phage Biology: From Classic Models to New Insights , 2018, Cell.

[85]  H. Lou,et al.  Structural Diversity and Biological Activities of Novel Secondary Metabolites from Endophytes , 2018, Molecules.

[86]  Micheal C. Wilson,et al.  Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts , 2018, Proceedings of the National Academy of Sciences.

[87]  J. Maciá‐Vicente,et al.  Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. , 2018, The New phytologist.

[88]  P. Poole,et al.  Rhizobia: from saprophytes to endosymbionts , 2018, Nature Reviews Microbiology.

[89]  R. Quinn,et al.  Annual Review of Pharmacology and Toxicology Harnessing the Properties of Natural Products , 2017 .

[90]  C. Hua,et al.  Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions. , 2017, Molecular plant.

[91]  M. Rashmi,et al.  Secondary Metabolite Production by Endophytic Fungi : The Gene Clusters , Nature , and Expression , 2018 .

[92]  M. Krings,et al.  Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov.† , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[93]  E. Brzuszkiewicz,et al.  Comparative genome and phenotypic analysis of three Clostridioides difficile strains isolated from a single patient provide insight into multiple infection of C. difficile , 2018, BMC Genomics.

[94]  C. Pieterse,et al.  Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria , 2017, Front. Microbiol..

[95]  Huimin Zhao,et al.  Breaking the silence: new strategies for discovering novel natural products. , 2017, Current opinion in biotechnology.

[96]  Anwar Rayan,et al.  Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity , 2017, PloS one.

[97]  Ying Huang,et al.  Genetic Manipulation of the COP9 Signalosome Subunit PfCsnE Leads to the Discovery of Pestaloficins in Pestalotiopsis fici. , 2017, Organic letters.

[98]  Robert Lücking,et al.  Fungal Diversity Revisited: 2.2 to 3.8 Million Species , 2017, Microbiology spectrum.

[99]  J. Stajich Fungal Genomes and Insights into the Evolution of the Kingdom , 2017, Microbiology spectrum.

[100]  M. Vainstein,et al.  Genome-Wide Analysis of Secondary Metabolite Gene Clusters in Ophiostoma ulmi and Ophiostoma novo-ulmi Reveals a Fujikurin-Like Gene Cluster with a Putative Role in Infection , 2017, Front. Microbiol..

[101]  O. Eriksson,et al.  Specificity of fungal associations of Pyroleae and Monotropa hypopitys during germination and seedling development , 2017, Molecular ecology.

[102]  T. Schwander,et al.  Patterns and mechanisms in instances of endosymbiont‐induced parthenogenesis , 2017, Journal of evolutionary biology.

[103]  William H. Gerwick,et al.  Retrospective analysis of natural products provides insights for future discovery trends , 2017, Proceedings of the National Academy of Sciences.

[104]  J. Lennon,et al.  A macroecological theory of microbial biodiversity , 2017, Nature Ecology &Evolution.

[105]  M. Anandaraj,et al.  Endophytic actinobacteria: Diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters , 2017, Critical reviews in microbiology.

[106]  Galen P. Miley,et al.  A Scalable Platform to Identify Fungal Secondary Metabolites and Their Gene Clusters , 2017, Nature chemical biology.

[107]  R. Malheiro,et al.  Antimicrobial activity of endophytic fungi from olive tree leaves , 2017, World journal of microbiology & biotechnology.

[108]  I-Min A. Chen,et al.  IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes , 2016, Nucleic Acids Res..

[109]  V. Maheshwari,et al.  Endophytes: Potential Source of Therapeutically Important Secondary Metabolites of Plant Origin , 2017 .

[110]  D. Maheshwari Endophytes: Biology and Biotechnology , 2017, Sustainable Development and Biodiversity.

[111]  Richard H. Baltz,et al.  Gifted microbes for genome mining and natural product discovery , 2017, Journal of Industrial Microbiology & Biotechnology.

[112]  A. Chaubey,et al.  An Insight into the Secondary Metabolism of Muscodor yucatanensis: Small-Molecule Epigenetic Modifiers Induce Expression of Secondary Metabolism-Related Genes and Production of New Metabolites in the Endophyte , 2017, Microbial Ecology.

[113]  V. Barbe,et al.  Modeling trophic dependencies and exchanges among insects’ bacterial symbionts in a host-simulated environment , 2016, bioRxiv.

[114]  M. Afzal,et al.  Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials , 2016 .

[115]  W. Carson,et al.  Foliar bacteria and soil fertility mediate seedling performance: a new and cryptic dimension of niche differentiation. , 2016, Ecology.

[116]  J. Wandji,et al.  Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant Gram-negative bacteria. , 2016, African health sciences.

[117]  P. Proksch,et al.  Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungal–bacterial co-culture and epigenetic modification , 2016 .

[118]  P. K. Agrawal,et al.  Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don , 2016, 3 Biotech.

[119]  H. Tan,et al.  A New Approach to Analyzing Endophytic Actinobacterial Population in the Roots of Banana Plants (Musa sp., AAA) , 2016 .

[120]  M. Andersen,et al.  Linker Flexibility Facilitates Module Exchange in Fungal Hybrid PKS-NRPS Engineering , 2016, PloS one.

[121]  Georgios A. Pavlopoulos,et al.  Uncovering Earth’s virome , 2016, Nature.

[122]  A. Willis Extrapolating abundance curves has no predictive power for estimating microbial biodiversity , 2016, Proceedings of the National Academy of Sciences.

[123]  J. Lennon,et al.  Reply to Willis: Powerful predictions of biodiversity from ecological models and scaling laws , 2016, Proceedings of the National Academy of Sciences.

[124]  J. Flexas,et al.  Alterations in primary and secondary metabolism in Vitis vinifera 'Malvasía de Banyalbufar' upon infection with Grapevine leafroll-associated virus 3. , 2016, Physiologia plantarum.

[125]  C. Llave Dynamic cross-talk between host primary metabolism and viruses during infections in plants. , 2016, Current opinion in virology.

[126]  M. Jia,et al.  A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review , 2016, Front. Microbiol..

[127]  J. Lennon,et al.  Scaling laws predict global microbial diversity , 2016, Proceedings of the National Academy of Sciences.

[128]  J. Soltani,et al.  Endohyphal bacteria from fungal endophytes of the Mediterranean cypress (Cupressus sempervirens) exhibit in vitro bioactivity , 2016 .

[129]  Marnix H Medema,et al.  Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. , 2016, Fungal genetics and biology : FG & B.

[130]  David A. Baltrus,et al.  Absence of genome reduction in diverse, facultative endohyphal bacteria , 2016, bioRxiv.

[131]  A. Arnold,et al.  Isolation of Endohyphal Bacteria from Foliar Ascomycota and In Vitro Establishment of Their Symbiotic Associations , 2016, Applied and Environmental Microbiology.

[132]  D. Nuss,et al.  Engineering super mycovirus donor strains of chestnut blight fungus by systematic disruption of multilocus vic genes , 2016, Proceedings of the National Academy of Sciences.

[133]  D. Newman,et al.  Natural Products as Sources of New Drugs from 1981 to 2014. , 2016, Journal of natural products.

[134]  A. Hemerly,et al.  Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants , 2016, Plant Molecular Biology.

[135]  Detlef Weigel,et al.  Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation , 2016, PLoS biology.

[136]  M. Jia,et al.  Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds , 2014, Critical reviews in microbiology.

[137]  P. Mariani,et al.  Microbiome profiling in fresh-cut products , 2015 .

[138]  A. Venugopalan,et al.  Endophytes as in vitro production platforms of high value plant secondary metabolites. , 2015, Biotechnology advances.

[139]  Kook Hyung Kim,et al.  Five Questions about Mycoviruses , 2015, PLoS pathogens.

[140]  Carla S. Jones,et al.  Minimum Information about a Biosynthetic Gene cluster. , 2015, Nature chemical biology.

[141]  Mingshu Cao,et al.  A QTL analysis of host plant effects on fungal endophyte biomass and alkaloid expression in perennial ryegrass , 2015, Molecular Breeding.

[142]  G. Challis,et al.  Discovery of microbial natural products by activation of silent biosynthetic gene clusters , 2015, Nature Reviews Microbiology.

[143]  E. Bedmar,et al.  Bacterial Associations with Legumes , 2015 .

[144]  Philippe Vandenkoornhuyse,et al.  The importance of the microbiome of the plant holobiont. , 2015, The New phytologist.

[145]  E. Radhakrishnan,et al.  Effect of endophytic Bacillus sp. from selected medicinal plants on growth promotion and diosgenin production in Trigonella foenum-graecum , 2015, Plant Cell, Tissue and Organ Culture (PCTOC).

[146]  O. Kayser,et al.  Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology , 2015, Applied Microbiology and Biotechnology.

[147]  Nowsheen Shameem,et al.  Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. , 2015, Microbial pathogenesis.

[148]  M. Roossinck Plants, viruses and the environment: Ecology and mutualism. , 2015, Virology.

[149]  N. Suzuki,et al.  50-plus years of fungal viruses. , 2015, Virology.

[150]  J. Fischer,et al.  Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters , 2015, Front. Microbiol..

[151]  Y. Kraepiel,et al.  A straightforward and reliable method for bacterial in planta transcriptomics: application to the Dickeya dadantii/Arabidopsis thaliana pathosystem. , 2015, The Plant journal : for cell and molecular biology.

[152]  J. Ludwig-Müller Plants and endophytes: equal partners in secondary metabolite production? , 2015, Biotechnology Letters.

[153]  M. Metsä-Ketelä,et al.  Targeted activation of silent natural product biosynthesis pathways by reporter-guided mutant selection. , 2015, Metabolic engineering.

[154]  U. Mortensen,et al.  Heterologous production of fungal secondary metabolites in Aspergilli , 2015, Front. Microbiol..

[155]  Mathias Dunkel,et al.  Super Natural II—a database of natural products , 2014, Nucleic Acids Res..

[156]  S. Ekesi,et al.  Colonization of Onions by Endophytic Fungi and Their Impacts on the Biology of Thrips tabaci , 2014, PloS one.

[157]  G. Bills,et al.  New insights into the echinocandins and other fungal non-ribosomal peptides and peptaibiotics. , 2014, Natural product reports.

[158]  H. Thordal-Christensen,et al.  Trans-kingdom Cross-Talk: Small RNAs on the Move , 2014, PLoS genetics.

[159]  D. Jiāng,et al.  New insights into mycoviruses and exploration for the biological control of crop fungal diseases. , 2014, Annual review of phytopathology.

[160]  Roger G. Linington,et al.  Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters , 2014, Cell.

[161]  F. Trognitz,et al.  Metabolic potential of endophytic bacteria , 2014, Current opinion in biotechnology.

[162]  Satpal Singh,et al.  Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. , 2014, Trends in biotechnology.

[163]  John B. O. Mitchell Machine learning methods in chemoinformatics , 2014, Wiley interdisciplinary reviews. Computational molecular science.

[164]  G. Hoffman Correction: Correcting for Population Structure and Kinship Using the Linear Mixed Model: Theory and Extensions , 2013, PloS one.

[165]  L. Espindola,et al.  Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: Isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. , 2013, Phytochemistry.

[166]  A. Arnold,et al.  Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte , 2013, PloS one.

[167]  W. Holben,et al.  Bacterial endophytes enhance competition by invasive plants. , 2013, American journal of botany.

[168]  Pierre Baldi,et al.  Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules , 2013, J. Chem. Inf. Model..

[169]  P. Proksch,et al.  Fungal endophytes - secret producers of bioactive plant metabolites. , 2013, Die Pharmazie.

[170]  M. Spiteller,et al.  Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. , 2013, Phytochemistry.

[171]  E. Prinsen,et al.  Distribution of the cardiotoxin pavettamine in the coffee family (Rubiaceae) and its significance for gousiekte, a fatal poisoning of ruminants. , 2013, Plant physiology and biochemistry : PPB.

[172]  Martha B. Arnaud,et al.  Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae , 2013, BMC Microbiology.

[173]  Intawat Nookaew,et al.  The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum , 2013, PLoS Comput. Biol..

[174]  J. Leveau,et al.  Isolation of Arthrobacter species from the phyllosphere and demonstration of their epiphytic fitness , 2013, MicrobiologyOpen.

[175]  M. Raizada,et al.  Interactions between Co-Habitating fungi Elicit Synthesis of Taxol from an Endophytic Fungus in Host Taxus Plants , 2012, Front. Microbio..

[176]  Axel A. Brakhage,et al.  Regulation of fungal secondary metabolism , 2012, Nature Reviews Microbiology.

[177]  Nobuyuki Fujita,et al.  DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters , 2012, Nucleic Acids Res..

[178]  Kyle R. Conway,et al.  ClusterMine360: a database of microbial PKS/NRPS biosynthesis , 2012, Nucleic Acids Res..

[179]  M. Roossinck,et al.  Multiplexed interactions: viruses of endophytic fungi. , 2013, Advances in virus research.

[180]  Mikael R. Andersen,et al.  Accurate prediction of secondary metabolite gene clusters in filamentous fungi , 2012, Proceedings of the National Academy of Sciences.

[181]  S. Kaul,et al.  Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites , 2012, Phytochemistry Reviews.

[182]  J. V. van Elsas,et al.  Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific. , 2012, FEMS microbiology ecology.

[183]  L. Eberl,et al.  The eroded genome of a Psychotria leaf symbiont: hypotheses about lifestyle and interactions with its plant host. , 2012, Environmental microbiology.

[184]  Simon P. Wilson,et al.  Predicting total global species richness using rates of species description and estimates of taxonomic effort. , 2012, Systematic biology.

[185]  In-Jung Lee,et al.  Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress , 2012, Molecules.

[186]  M. Pärtel,et al.  Plant species richness: the world records , 2012 .

[187]  F. Chang,et al.  Highly oxidized ergosterols and isariotin analogs from an entomopathogenic fungus, Gibellula formosana, cultivated in the presence of epigenetic modifying agents , 2012 .

[188]  J. Strauss,et al.  The chromatin code of fungal secondary metabolite gene clusters , 2012, Applied Microbiology and Biotechnology.

[189]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[190]  A. M. Gonzalez,et al.  Compounds derived from endophytes: a review of phytochemistry and pharmacology. , 2012, Current medicinal chemistry.

[191]  Ute Roessner,et al.  A Historical Overview of Natural Products in Drug Discovery , 2012, Metabolites.

[192]  W. Bains,et al.  A combinatorial approach to biochemical space: description and application to the redox distribution of metabolism. , 2012, Astrobiology.

[193]  V. Venturi,et al.  Incoming pathogens team up with harmless 'resident' bacteria. , 2012, Trends in microbiology.

[194]  M. Roossinck,et al.  Are communities of microbial symbionts more diverse than communities of macrobial hosts? , 2012, Fungal biology.

[195]  Hongyan Zhu,et al.  Symbiosis specificity in the legume – rhizobial mutualism , 2012, Cellular microbiology.

[196]  Peter D. Karp,et al.  Construction and completion of flux balance models from pathway databases , 2012, Bioinform..

[197]  R. Krska,et al.  Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum , 2012, Fungal genetics and biology : FG & B.

[198]  Soizic Prado,et al.  Diversity and Ecological Significance of Fungal Endophyte Natural Products , 2012 .

[199]  G. Turner,et al.  Fungal Secondary Metabolism , 2012, Methods in Molecular Biology.

[200]  C. Rosa,et al.  Endophytic Fungi of Tropical Forests: A Promising Source of Bioactive Prototype Molecules for the Treatment of Neglected Diseases , 2011 .

[201]  S. Ghabrial,et al.  A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum. , 2011, Virology.

[202]  Andrea Porras‐Alfaro,et al.  Hidden fungi, emergent properties: endophytes and microbiomes. , 2011, Annual review of phytopathology.

[203]  Jingyan Gu,et al.  Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. , 2011, Phytochemistry.

[204]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[205]  P. Proksch,et al.  Fungal endophytes: unique plant inhabitants with great promises , 2011, Applied Microbiology and Biotechnology.

[206]  E. Smets,et al.  Endophytic Bacteria in Toxic South African Plants: Identification, Phylogeny and Possible Involvement in Gousiekte , 2011, PloS one.

[207]  M. Wingfield,et al.  Characterization of a novel dsRNA element in the pine endophytic fungus Diplodia scrobiculata , 2011, Archives of Virology.

[208]  M. Blackwell The fungi: 1, 2, 3 ... 5.1 million species? , 2011, American journal of botany.

[209]  M. Cox,et al.  What triggers grass endophytes to switch from mutualism to pathogenism? , 2011, Plant science : an international journal of experimental plant biology.

[210]  M. Roossinck The good viruses: viral mutualistic symbioses , 2011, Nature Reviews Microbiology.

[211]  G. Pastore,et al.  The Use of Endophytes to Obtain Bioactive Compounds and Their Application in Biotransformation Process , 2010, Biotechnology research international.

[212]  H. Izumi Diversity of Endophytic Bacteria in Forest Trees , 2011 .

[213]  Axel A Brakhage,et al.  Fungal secondary metabolites - strategies to activate silent gene clusters. , 2011, Fungal genetics and biology : FG & B.

[214]  Wenjun Li,et al.  Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria , 2011, Applied Microbiology and Biotechnology.

[215]  R. Jeewon,et al.  Endophytic Pestalotiopsis species associated with plants of Palmae, Rhizophoraceae, Planchonellae and Podocarpaceae in Hainan, China , 2010 .

[216]  E. Favela-Torres,et al.  A comparative study of Taxol production in liquid and solid‐state fermentation with Nigrospora sp. a fungus isolated from Taxus globosa , 2010, Journal of applied microbiology.

[217]  Ji He,et al.  Teasing apart a three-way symbiosis: transcriptome analyses of Curvularia protuberata in response to viral infection and heat stress. , 2010, Biochemical and biophysical research communications.

[218]  D. Haft,et al.  SMURF: Genomic mapping of fungal secondary metabolite clusters. , 2010, Fungal genetics and biology : FG & B.

[219]  M. Roossinck Lifestyles of plant viruses , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[220]  A. Arnold,et al.  Diverse Bacteria Inhabit Living Hyphae of Phylogenetically Diverse Fungal Endophytes , 2010, Applied and Environmental Microbiology.

[221]  James Francis White,et al.  Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? , 2010, Physiologia plantarum.

[222]  K. Tang,et al.  A review: recent advances and future prospects of taxol-producing endophytic fungi , 2010, Applied Microbiology and Biotechnology.

[223]  A. Carroll,et al.  Pestalactams A-C: novel caprolactams from the endophytic fungus Pestalotiopsis sp. , 2010, Organic & biomolecular chemistry.

[224]  P. Proksch,et al.  Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products , 2010, Nature Protocols.

[225]  F. Pedrosa,et al.  Diversity of endophytic bacteria in Brazilian sugarcane. , 2010, Genetics and molecular research : GMR.

[226]  Oliver Kayser,et al.  Taxomyces andreanae: a presumed paclitaxel producer demystified? , 2009, Planta medica.

[227]  N. Lorenz,et al.  The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. , 2009, Phytochemistry.

[228]  P. Thomas,et al.  Endophytic Bacteria Associated with Growing Shoot Tips of Banana (Musa sp.) cv. Grand Naine and the Affinity of Endophytes to the Host , 2009, Microbial Ecology.

[229]  C. Hertweck,et al.  Triggering cryptic natural product biosynthesis in microorganisms. , 2009, Organic & biomolecular chemistry.

[230]  A. Arnold,et al.  Fungal endophytes: diversity and functional roles. , 2009, The New phytologist.

[231]  J. Muthumary,et al.  A Novel Endophytic Taxol-Producing Fungus Chaetomella raphigera Isolated From a Medicinal Plant, Terminalia arjuna , 2009, Applied biochemistry and biotechnology.

[232]  F. Sasse,et al.  Fungal endophytes and bioprospecting , 2009 .

[233]  G. Challis,et al.  2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining , 2008, Proceedings of the National Academy of Sciences.

[234]  J. Zucko,et al.  ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures , 2008, Nucleic acids research.

[235]  C. Tseng,et al.  Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. , 2008, Journal of agricultural and food chemistry.

[236]  H. J. Woerdenbag,et al.  Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery , 2008 .

[237]  D. Sinclair,et al.  Xenohormesis: Sensing the Chemical Cues of Other Species , 2008, Cell.

[238]  Yong-guan Zhu,et al.  Positive correlation between soil bacterial metabolic and plant species diversity and bacterial and fungal diversity in a vegetation succession on Karst , 2008, Plant and Soil.

[239]  K. Tang,et al.  Bioactive natural products from endophytes: A review , 2008, Applied Biochemistry and Microbiology.

[240]  M. Spiteller,et al.  An endophytic fungus from Hypericum perforatum that produces hypericin. , 2008, Journal of natural products.

[241]  Xiuzhu Dong,et al.  Endophytic Bacterial Diversity in Rice (Oryza sativa L.) Roots Estimated by 16S rDNA Sequence Analysis , 2008, Microbial Ecology.

[242]  Xuemin Zhang,et al.  Evidence that RNA silencing functions as an antiviral defense mechanism in fungi , 2007, Proceedings of the National Academy of Sciences.

[243]  M. Tribus,et al.  Histone Deacetylase Activity Regulates Chemical Diversity in Aspergillus , 2007, Eukaryotic Cell.

[244]  D. Hoffmeister,et al.  Natural products of filamentous fungi: enzymes, genes, and their regulation. , 2007, Natural product reports.

[245]  D. Stahl,et al.  Metabolic modeling of a mutualistic microbial community , 2007, Molecular systems biology.

[246]  B. Scott,et al.  A Complex Ergovaline Gene Cluster in Epichloë Endophytes of Grasses , 2007, Applied and Environmental Microbiology.

[247]  F. Lutzoni,et al.  Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. , 2007, Molecular phylogenetics and evolution.

[248]  R. Redman,et al.  A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance , 2007, Science.

[249]  G. Spangenberg,et al.  A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. , 2006, Fungal genetics and biology : FG & B.

[250]  R. Hückelhoven,et al.  Endophyte or parasite--what decides? , 2006, Current opinion in plant biology.

[251]  E. Martínez-Romero,et al.  Bacterial endophytes and their interactions with hosts. , 2006, Molecular plant-microbe interactions : MPMI.

[252]  M. Tarkka,et al.  Auxofuran, a Novel Metabolite That Stimulates the Growth of Fly Agaric, Is Produced by the Mycorrhiza Helper Bacterium Streptomyces Strain AcH 505 , 2006, Applied and Environmental Microbiology.

[253]  János Bérdy,et al.  Bioactive microbial metabolites. , 2005, The Journal of antibiotics.

[254]  M. Arakawa,et al.  A Reovirus Causes Hypovirulence of Rosellinia necatrix. , 2004, Phytopathology.

[255]  J. Stelling,et al.  Combinatorial Complexity of Pathway Analysis in Metabolic Networks , 2004, Molecular Biology Reports.

[256]  G. Strobel Endophytes as sources of bioactive products. , 2003, Microbes and infection.

[257]  Peter Vandamme,et al.  'Candidatus glomeribacter gigasporarum' gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. , 2003, International journal of systematic and evolutionary microbiology.

[258]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[259]  B. Schulz,et al.  Endophytic fungi: a source of novel biologically active secondary metabolites * * Paper presented at , 2002 .

[260]  Axel Zeeck,et al.  Big Effects from Small Changes: Possible Ways to Explore Nature's Chemical Diversity , 2002, Chembiochem : a European journal of chemical biology.

[261]  A. Arnold,et al.  Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity , 2001 .

[262]  C. Young,et al.  Elimination of ergovaline from a grass–Neotyphodium endophyte symbiosis by genetic modification of the endophyte , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[263]  Z. Zheng,et al.  Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis. , 2001, FEMS immunology and medical microbiology.

[264]  D. Redecker,et al.  Glomalean fungi from the Ordovician. , 2000, Science.

[265]  P. Coley,et al.  Are tropical fungal endophytes hyperdiverse , 2000 .

[266]  I. Chapela,et al.  Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. , 1994, Biotechnology.

[267]  V. Gullo The discovery of natural products with therapeutic potential. , 1994, Biotechnology.

[268]  A. Stierle,et al.  Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. , 1993, Science.

[269]  R. M. Macdonald,et al.  THE OCCURRENCE OF BACTERIUM‐LIKE ORGANELLES IN VESICULAR‐ARBUSCULAR MYCORRHIZAL FUNGI , 1982 .

[270]  F. W. Preston The Commonness, And Rarity, of Species , 1948 .