Computation of Gauss-type quadrature formulas

Gaussian formulas for a linear functional L (such as a weighted integral) are best computed from the recursion coefficients relating the monic polynomials orthogonal with respect to L. In Gauss-type formulas, one or more extraneous conditions (such as pre-assigning certain nodes) replace some of the equations expressing exactness when applied to high-order polynomials. These extraneous conditions may be applied by modifying the same number of recursion coefficients. We survey the methods of computing formulas from recursion coefficients, methods of obtaining recursion coefficients and modifying them for Gauss-type formulas, and questions of existence and numerical accuracy associated with those computations.

[1]  Lothar Reichel,et al.  Fast QR decomposition of Vandermonde-like matrices and polynomial least squares approximation , 1991 .

[2]  Gene H. Golub,et al.  On the calculation of Jacobi Matrices , 1983 .

[3]  Lothar Reichel,et al.  Construction of polynomials that are orthogonal with respect to a discrete bilinear form , 1993, Adv. Comput. Math..

[4]  W. Gragg,et al.  The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .

[5]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Bidiagonal SVD , 1995, SIAM J. Matrix Anal. Appl..

[6]  W. Gautschi Construction of Gauss-Christoffel quadrature formulas , 1968 .

[7]  Thomas N. L. Patterson,et al.  An algorithm for generating interpolatory quadrature rules of the highest degree of precision with preassigned nodes for general weight functions , 1989, TOMS.

[8]  W. Gautschi On Generating Orthogonal Polynomials , 1982 .

[9]  E. Wagner International Series of Numerical Mathematics , 1963 .

[10]  Explicit Calculation of Some Polynomials Introduced by W. Gautschi , 1998 .

[11]  Jaroslav Kautsky,et al.  Gauss quadratures and Jacobi matrices for weight functions not of one sign , 1984 .

[12]  T. Patterson On some Gauss and Lobatto based integration formulae. , 1968 .

[13]  Beresford N. Parlett,et al.  The New qd Algorithms , 1995, Acta Numerica.

[14]  R. A. Sack,et al.  An algorithm for Gaussian quadrature given modified moments , 1971 .

[15]  H. Rutishauser Der Quotienten-Differenzen-Algorithmus , 1954 .

[16]  Bernhard Beckermann,et al.  How to choose modified moments , 1998 .

[17]  W. Gautschi A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .

[18]  WALTER GAUTSCHI Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.

[19]  G. Golub,et al.  Calculation of Gauss quadratures with multiple free and fixed knots , 1983 .

[20]  Walter Gautschi On the sensitivity of orthogonal polynomials to perturbations in the moments , 1986 .

[21]  W. Gautschi Questions of Numerical Condition Related to Polynomials , 1978 .

[22]  Walter Gautschi How and how not to check Gaussian quadrature formulae , 1983 .

[23]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[24]  Dirk P. Laurie,et al.  Questions Related to Gaussian Quadrature Formulas and Two-Term Recursions , 1999 .

[25]  Dirk P. Laurie Accurate recovery of recursion coe cients from Gaussian quadrature formulas , 1999 .

[26]  Inderjit S. Dhillon,et al.  Fernando's solution to Wilkinson's problem: An application of double factorization , 1997 .

[27]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[28]  Dirk Laurie,et al.  Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..

[29]  A. Stroud,et al.  Nodes and Weights of Quadrature Formulas , 1965 .

[30]  Dirk P. Laurie,et al.  Anti-Gaussian quadrature formulas , 1996, Math. Comput..

[31]  Lothar Reichel,et al.  COMPUTATION OF GAUSS-KRONROD QUADRATURE RULES WITH NON-POSITIVE WEIGHTS , 1999 .

[32]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[33]  Herbert E. Salzer,et al.  A recurrence scheme for converting from one orthogonal expansion into another , 1973, CACM.

[34]  I. Dhillon Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem , 1998 .

[35]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[36]  Gene H. Golub,et al.  Computation of Gauss-Kronrod quadrature rules , 2000, Math. Comput..

[37]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[38]  H.-J. Fischer On Generating Orthogonal Polynomials for Discrete Measures , 1998 .

[39]  H.-J. Fischer On the Condition of Orthogonal Polynomials via Modified Moments , 1996 .

[40]  Dirk P. Laurie,et al.  STRATIFIED SEQUENCES OF NESTED QUADRATURE FORMULAS , 1992 .

[41]  S. Lewanowicz Construction of a recurrence relation for modified moments , 1979 .

[42]  W. Gragg,et al.  Notes on TQR algorithms , 1997 .

[43]  Walter Gautschi Gauss-type Quadrature Rules for Rational Functions , 1993 .